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Langages dédiés incorporés par 1"utilisation
de bibliotheques et

de la métaprogrammation dynamique
Résumé

La programmation utilisant des langages dédiés a des domaines est
certainement destinée a jouer un role central en ce qui concerne
l'augmentation de la productivité dans l'écriture de logiciels. Cela
est dii au fait que les nouvelles abstractions ajoutées aux langages
généralistes sont complexes et rarement applicables & des taches de
programmation courantes. Par contre, ces abstractions peuvent servir
a encoder des abstractions dédiées. De cette fagon, le langage géné-
raliste sert d’hote dans lequel des fragments dédiés sont incorporés.
Les techniques d’ingénierie logicielle habituelles s’appliquent, mais
permettent simultanément I'écriture de programmes intégrant divers
domaines.

Cette these décrit deux techniques de ce type en Scala—un lan-
gage orienté-objet et fonctionnel moderne. La premiere permet d’in-
corporer des fragments de code ayant une syntaxe dédiée, qui est
tissée dans la propre syntaxe du langage hote de fagon a la faire
apparaitre comme différente. La seconde technique utilise des types
structurels afin d’encoder des propriétés de correction dédiées que
des types orientés-objet ne peuvent représenter. Une implantation
des types structurels pour Scala est aussi décrite. La caractéristique
partagée de ces deux techniques est que leurs propriétés dédiées
sont fournies par des bibliotheques définies uniquement en terme
d’abstractions généralistes.

Toutefois, ces techniques exemplifient également en quoi l'incor-
poration de certaines propriétés dépends de données disponibles
dans le compilateur, qui sont ensuite perdues dans les langages sta-
tiquement typés. Ni les abstractions généralistes, ni les techniques
traditionnelles de réflexion dynamique ne donnent accés a ces don-
nées ; retenir toutes ces données est également irréalisable. Cette these
décrit deux techniques de métaprogrammation qui permettent a des
bibliotheques d’incorporation de demander 1’acces a des données du
compilateur sur le code ou les types, selon les besoins. Ces données
du compilateur sont alors disponibles comme valeurs dans le pro-
gramme. Elle décrit par ailleurs une structure de métaprogramma-
tion qui combine des données du compilateur dans le code avec la
réflexion. Sa conception est basée sur les miroirs, et permet un partage
de code important entre la structure de métaprogrammation et le
compilateur.



Mots clés : Techniques et Outils de Conception Logicielle; Scala;
Programmation Orientée-Objet; Programmation Applicative (Fonc-
tionnelle) ; Langages Dédiés (Spécifique aux Domaine) ; Bibliotheques
Logicielles ; Compilateurs; Génération de Code; Métaprogramma-
tion.



Embedded Domain-Specific Languages

Using Libraries and Dynamic Metaprogramming

Abstract

Domain-specific programming is bound to play a central role in
improving the productivity of writing software. This is because
modern, intricate, general-purpose abstractions are rarely applicable
directly to everyday programming. However, such abstractions can
be used to encode domain-specific abstractions, so that the general-
purpose language serves as a host in which domain-specific fragments
are embedded. The benefit of traditional software engineering is
maintained, while allowing writing software that integrates multiple
domains.

This thesis describes two such techniques in Scala—a modern lan-
guage with functional and object-oriented features. The first allows
embedding fragments of code with domain-specific syntax, which
is weaved within the host language’s own syntax so that it appears
as being different. The second technique uses structural types to
encode domain-specific correctness properties that object-oriented
types cannot represent. An implementation of structural types in
Scala is also described. The common characteristic of both techniques
is that domain-specific properties are provided by a library relying
only on general-purpose abstractions.

However, the techniques also exemplify how certain embedding
tasks rely on data that is available in the compiler but is then lost
in statically-typed languages. General-purpose abstractions do not
give access to this data, nor do traditional runtime reflection tech-
niques; keeping all data is also impractical. This thesis describes two
metaprogramming techniques whereby compiler data on code (code
lifting) and types (manifests) can be requested by embedding libraries
when needed. Compiler data is then available as literal values in the
program. It further describes a metaprogramming framework that
combine compiler data available in code with reflection. Its design is
mirror-based, and allows a high degree of code sharing between the
metaprogramming framework and the compiler.

Keywords: Software Design Tools and Techniques; Scala; Object-
Oriented Programming; Applicative (Functional) Programming; Do-
main-Specific Languages; Software Libraries; Compilers; Code Gen-
eration; Metaprogramming.
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Preface

Immediately after imagining the first computer arose the question on
how to communicate with these alien contraptions. To us, people, the
tongue that computers understand is very strange. It is impossibly
literal—no imprecision or omission is tolerable. Because of that, it
ignores hyperbole, images, abstractions: all means that we use to
communicate about complex ideas. Of course, if computers were
incapable of coping with hard notions, their success would have been
limited. But this was not to be the case, and computers have become
the beating heart of our information society. The tool that allowed it:
programming languages.

Programming languages bridge the gap between people and com-
puters. They allow abstraction, complete small omissions, and find
hazardous imprecisions. Because programming languages are so
central to using computers, they have been part of their history almost
from the start. The intention that underlays most of their development
is that of increased abstraction. Concepts such as functions, objects or
continuations raise the level of abstraction, giving the developer more
leverage to express his ideas. Sixty years of raising the abstraction
level have led to modern languages, such as Scala, that allow program-
mers to express very subtle concepts.

Simultaneously, progress in network and processor technologies
have made programming harder today than it ever was. Programs are
executed on increasingly elaborate mediums: multi-core processors
or the cloud are typical examples. Different parts of programs are
on machines of very different capabilities. A web application, for
example, is split between the part running on the client’s browser
and that running on the server. No existing abstractions are useful
on all mediums and when code is executed concurrently; efforts to
unify different abstractions have been inconclusive to this day.

Furthermore, this happens at a time when adding ever more
complex general abstractions in languages seems to yield diminishing
returns. Straightforward and intuitive abstractions are already part
of most languages. New abstractions, however powerful, tend to be
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subtle and require elaborate programming. It is debatable whether
they contribute directly to making programs simpler. Must one
therefore consider that programming language research is becoming
increasingly irrelevant? Is it destined to propose increasingly complex
abstractions that are increasingly difficult to use for solving always
smaller problems?

No, of course. But abstractions that will help programmers in
the future are unlikely to be general-purpose abstractions that can
directly be applied to problems, like traditional abstractions have
been. For that, they are too complex. Instead, they must serve
to enable sophisticated programmers to provide for the needs of
others. This fundamentally changes the way in which languages are
designed. Now, most programmers are not expected to use new
language features, or indeed to understand them. However, they must
be able to benefit from them.

To give an example, expert Scala programmers have used implicit
arguments and higher-kinded types to create a collection library that is
highly consistent and safe [67]. Users of this library benefit from a
depth of type checking that normal abstractions would not permit.
Furthermore, the implementation has significantly more code reuse
than would have been possible otherwise. Despite that, neither
implicit definitions nor higher-kinded types are visible in the user
program.

Language research must support the hard work done by specialist
programmers using subtle abstractions to deliver straightforward
concepts that solve specific problems. A form of programming that
is particularly straightforward and specific is embedded domain-spe-
cific programming. It is domain-specific because the new abstractions
created by expert programmers do not relate to all problems, but
are tailored to a specific task in a specific domain. It is embedded
because the domain abstractions are hosted within a general-purpose
programming languages, with which they integrate. Language ab-
stractions that can be used to create domain-specific languages, and
embed them will be the main subject of this thesis.

Domain-specific programming is touted by some [22, 20] as the
most promising evolution of modern programming. By giving to
programmers tools that are specific to the task they are solving, the
gap between the problem and the solution is reduced. Their effort can
be concentrated on solving the problem at hand instead of encoding
it into generic abstractions. Hard problems can become simple if they
are solved using the vocabulary and concepts of their domain. Certain
types of problems are already mostly solved using domain-specific
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Preface

languages: searching text, using regular expressions; or querying
relational data, using sorL. However, these domain-specific languages
are usually hard-coded or poorly integrated. What abstractions are
needed in general-purpose languages to facilitate the development of
new domain-specific languages?

Contributions This thesis is an exploration of embedding domain-
specific languages in Scala using libraries. It contributes two tech-
niques for writing such libraries. It offers a reasoned discussion on
their nature in comparison to traditional libraries, thereby exposing
flaws of traditional abstraction for embedded domain-specific pro-
gramming, and proposes metaprogramming as a solution. Metapro-
gramming techniques are described; some are new, some are existing
techniques improved for domain-specific programming. It contrib-
utes a design to unify these techniques into a coherent metaprogram-
ming framework for domain-specific programming. Underlying the
whole thesis is the following conjecture, which will be discussed
throughout.

Modern statically-typed object-oriented languages such
as Scala have language abstractions—or can support new
abstractions—that allow to satisfactorily host domain-spe-
cific programming. Domain-specific syntax, semantics,
correctness properties and data can be provided without
preprocessor or custom compiler. However, more static
data must flow to the runtime implementation of domain-
specific libraries than what is required by other libraries.
Metaprogramming that unifies the compiler and runtime
reflection provides the right framework to support this.

The first part of the thesis proposes embedding techniques that rely
on existing abstractions in Scala and other modern languages.

e It describes ZyTyG, a programming technique that is used to
implement a domain-specific language parser as a library in
Scala. It also defines modulo-constrained grammars, the family of
languages that can be parsed using that technique.

e The thesis discusses how structural types in the host language
can be used to encode domain-specific soundness properties.
It describes an implementation of Scala’s structural types on
the Java virtual machine using reflection. The performance of
that implementation technique is analysed and compared with
others.
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The second part of the thesis presents modifications to the design of
Scala that are specific to domain-specific programming.

o The thesis describes type-directed code lifting, a form of staged
programming inspired by MetaML. Controlling staging using
types makes the lifting potentially invisible to the user, which
is better suited for embedding domain-specific languages. It
presents a design for the implementation of type-directed code
lifting in the Scala compiler.

o The thesis introduces manifests, a metaprogramming technique
inspired by the “scrap your boilerplate” technique, which give
runtime access to static type information in languages that
do not maintain it at runtime (erased languages). Manifests
do not have the overhead of runtime types, yet give enough
access to type information for solving an important class of
domain-specific embedding problems. The thesis also presents
an implementation of manifests in Scala.

o Finally, the thesis describes a mirror-based design for an integ-
rated metaprogramming framework. It combines code lifting,
manifests and traditional reflection, bringing together the tools
that are needed to solving domain-specific programming tasks.
Furthermore, the design unifies related concepts in metapro-
gramming and the compiler. This allows to dramatically reduce
code duplication in the implementation of a metaprogramming-
enabled language. It also creates opportunities to better utilise
the interaction between the compiler and the runtime to solve
domain-specific programming problems.

The work that led to this thesis has been done at EPFL’s programming
methods laboratory, the home of the Scala language. Much of the
discussion will use Scala as example or model. But many of the
problems discussed in this thesis are relevant to other languages too,
and they may serve as a useful guide for designers of languages that
aim to support domain-specific programming.

Part[[|:[On Domain-Specific Languages|

The first part of this thesis discusses two examples of using general
abstractions to embed domain-specific languages. While the tech-
niques are interesting in themselves—their presentation constitutes
the heart of that part—, the topic that underlies it in effect is that
of the suitability of general abstractions for embedding. At the
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Preface

end of this part, we will conclude that embedded domain-specific
languages have very particular requirements that are currently not
entirely fulfilled by Scala, and generally in statically-typed languages.

Chapter [I| introduces the topic of domain-specific programming
and of embedded domain-specific languages. It argues that em-
bedded domain-specific programming is one of the most promising
solutions to improve the productivity of writing software. A typology
of embeddings is defined, based on their nature and their degree.
Current techniques for embedding domain-specific languages are
discussed.

Chapter|presents ZyTyG, a technique that uses language abstrac-
tions in order to imitate a domain-specific syntax that differs from that
of Scala. It contains a guide on how to implement the encoding library
for all operators of EBNF grammars. The limitations imposed by the
technique are described through a new class of regular grammars, and
the corresponding state automata. The technique is exemplified by its
use to embed 150 sQL, whose implementation characteristics are briefly
described.

The theme of type-safe domain-specific programming is discussed
in Chapter[3] which postulates that certain characteristics of structural
types make them particularly suitable for typing domain-specific
code. Scala’s structural types are shortly described, and their imple-
mentation in the Scala compiler is presented, and compared to another
implementation technique. A system to guarantee soundness for a
relational algebra domain-specific language using structural types is
described. It results in the observation that, while type soundness can
be provided, the domain-specific language cannot be implemented to
generate actual values.

Part[II]:[On Metaprogramming]

The second part builds on the weaknesses described in existing ab-
stractions that can be used to embed domain-specific languages. It
describes metaprogramming techniques that give domain-specific
embedding libraries access to information about the program that
they require. Two specific techniques are described, one pertaining to
accessing code, the other types, and concludes by attempting to unify
them.

Chapter {4 reviews the previously-described techniques to under-
stand the fundamental nature of the problem afflicting them. The
proposed solution is a form of metaprogramming whereby more static
information is made available through runtime reflection. Techniques
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providing related forms of metaprogramming through staging are
discussed, as well as state-of-the-art design techniques for reflection.

The first component of this work’s metaprogramming proposal,
which concerns code, is laid out in Chapter 5| The concept of lifted
code is described, as well as its implementation in Scala. A method
to use types to control lifting is outlined. The usage of the method is
described though an example of an embedded XQuery library, where
queries are written in native code that is transformed by a domain-
specific library at runtime.

Chapter [f] introduces type manifests, the second component of
the metaprogramming proposal. Various aspects of their use and
of their integration with the language are explained. An overview
of their implementation is provided. The unfinished example of
Chapter [3| is completed with the help of manifests, demonstrating
their contribution to domain-specific programming. The last section
of this chapter grapples with the question of whether a language
remains statically-typed in the presence of such metaprogramming.

The final chapter of the second part (Chapter [/) observes that
the previously described metaprogramming techniques become truly
powerful when working together and with runtime reflection. It
proposes to extend the unifying idea of mirror-based reflection to en-
compass also the compiler, which code lifting and manifests strongly
relate to. The question of maintaining identity in such systems that
span multiple metaprogramming providers is discussed. An imple-
mentation of mirror-based metaprogramming in Scala is proposed,
first concentrating on its ability to foster code reuse, which is later
extended to help integrating multiple frameworks into one.

The conclusion chapter of this dissertation reviews how supporting
embedded domain-specific programming changes the way in which
one considers the purpose of a language. Certain operations that
in normal programming are deemed dangerous or useless become
crucial to successful embeddings. A series of recommendations for
language design in light of this understanding are presented.
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Chapter 1

Domain-Specific Programming:
Benefits and Methods

A problem is hard in a given language if solving it requires the
programmer to display an unusually high level of creativity, or if
it requires an unusually high number of trials. As an example,
writing high performance code is usually a hard problem. Even
though general design principles exist—use of caching, parallelism,
known high performance algorithms—the design space that must
be explored is very large. Finding the right implementation for
a problem, requires broad knowledge, judgement and often a fair
amount of cunning. Furthermore, because it is difficult on modern
hardware to have a good mental model of performance characteristics,
writing a high performance program usually requires many iterations
of benchmarking and adaptation. In other words, a priori knowledge
cannot be used to make correct design decisions most of the time.

On the other hand, easy problems are such that their solution is
like their description. A striking example is user interface design in
wysiwyG development, where both the solution and its description are
identical. We will discuss this example below. Writing a language
parser using a parser combinator library is easy because, from the
grammar—its description—, the implementation is trivial. Easy prob-
lems may still require large programs to be solved, for example when
writing content-driven web applications. However, their uniform and
predictable nature makes them easy despite their size.

Whether a problem is easy or hard obviously depends on its
nature. Some problems such as simple arithmetic on relatively small
numbers are intrinsically easy on a computer. For most problems,
however, their difficulty depends upon the programming model in
which they are solved. In other words, it is the quality of the
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abstractions provided by the programming language or environment
that make a problem be easy or hard.

The quality of abstractions in modern languages is much improved
over those of their ancestors. Let us examine Scala as an example of
a modern language with varied and powerful abstractions. It uni-
fies the paradigms of object-oriented and functional programming.
Higher order functions and other abstractions considerably reduce
its syntactic overhead and allow the program to focus on its core
characteristics. Scala’s static type system provides safety to programs
and allows to define rich interfaces for better modularity. Martin
Odersky and other proponents of Scala claim that programs written
in Scala can be as little as half the length of equivalent Java programs.
I have shown [32] that shorter programs lead to easier and faster code
comprehension in an experimental setup, even when the complexity
of the algorithms they represent is equivalent.

However, the long term trend of languages becoming more ex-
pressive is counterbalanced by the fact that programming becomes
intrinsically harder. In particular, programming environments are
more complex today than they ever were before. Single applications
rely on multiple platforms with different capabilities and whose in-
terconnection is often complex. This is particularly noticeable in large
web applications that span the browser, server infrastructure—itself
oftentimes distributed—multiple databases, et cetera. However, even
traditional desktop applications no longer are developed on a unified
platform. GPU and cloud computing are becoming mainstream
techniques, sapping the old programming paradigms. Instead of a
single, homogeneous system, developers have to take into account the
inherent complexity of uneven capabilities and interconnection that
heterogeneous applications requires.

In other words, improvements to programming languages are
counterbalanced by the increasingly complex nature of modern pro-
grams. Which of these two factors is more important is an interesting
question that is very difficult to answer convincingly and beyond the
scope of this dissertation. However, it is clear that simply enhancing
the way programs are written without fundamentally changing what
is written, allows incremental improvements at best. Only when in-
cremental improvements in languages collude to make hard problems
easy can breakthroughs happen.

What abstractions can make a hard problem easy? Of course, an-
swers to this question include a component of taste, and are therefore
necessarily personal to some degree. However, we will discuss below
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Chapter 1: Domain-Specific Programming: Benefits and Methods

a popular idea that may be a general solution to this problem. This
idea is domain-specific programming. The assumption is that, once
the domain of a problem has clearly been identified, and a domain-
specific language exists to program it, that problem becomes easy. The
end of this section explores this assumption.

To start with an example, we will discuss the task of programming
user interfaces. The interactive graphical user interface, introduc-
tion in the 1970s, changed the way programs are written. With
traditional batch programs and programs with semi-interactive text
based interfaces, the substance of any code is in its business logic.
On the other had, laying out interface widgets and defining their
interactive behaviour became an important part of the complexity of
new graphical programs. Using general-purpose abstractions for this
task does not work well. The linear nature of code is fundamentally
in conflict with:

o their two-dimensional layout;

e values that are inherently relative—this widget is left-aligned
with that other—as opposed to absolute and numeric;

e their interactive behaviour.

Because of that, programming environments were extended with
programming models specific to user interfaces. As early as the mid-
1970, a quintessentially domain-specific solution started to gain in
popularity: wysiwyG user interface editors. There, the problem of
programming a user interface is reduced to the task of drawing it.
Apple’s HyperCard, released in 1987, is an example of early graphical
editors for graphical user interfaces. Other later examples of such
tools are Microsoft VisualStudio or Borland Delphi, whose impact on
programming practices of the decades of 1990 and 2000 was profound.

Figure(L.1|shows the help screen for adding a new button to a user
interface in HyperCard. Notice how most of the described interaction
has to do with domain-specific notions, such as moving the button,
changing its size, or linking to another card. Only the notion of
“editing its script” relates to a concept outside of the domain. This is
symptomatic of a domain-specific solution to a problem, which relies
on abstractions and on a vocabulary that are part of the domain. No
unrelated abstractions encumber the solution to the problem, as is the
case when using general-purpose mechanisms. In fact, the description
of the solution—a display of the desired user interface—is the solution
itself. This is domain-specific programming at its purest. Anyone, a
child, can write a user interface using HyperCard. The hard problem
becomes easy when domain-specific abstractions are used.
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Dbjects New Button

Button Info...
Field Info...
Card Info...
Bkgnd Info...
Stack Info...

Creates a new button named New Button.
Double-click the button to edit its name,
hide or show its name, changs its style,
link it to ancther card, ot edit its script.

Bring Closer 3+ Tou can movs the buthon or change its size
Send Farther - and shape by dragging. Hold down the
Shift key while you drag to constrain the
New Button :
New Field button to the standard Macintosh button
New Background

Figure 1.1: HyperCard help screen describing how to add a button to
a user interface.

However, while interesting to demonstrate the benefit of domain-
specific programming, HyperCard and other graphical interface edit-
ors are not immune to critique. To start, the way in which these tools
bind behaviour and layout is necessarily constrained. This prevents
the definition of any interface with non-standard user interaction.
More fundamentally, however, these tools invert the focus of program
design found in traditional general-purpose programming environ-
ments. A problem that is merely an element of the larger program
in traditional approaches, becomes the primary structure around
which the program is designed. The program is built around its user
interface, even when that structure does not suit the problem well. Not
surprisingly, applications developed using graphical interface editors
are not renowned for their refined design.

1.1 Related work: domain-specific programming

A usual definition of domain-specific programming is that it allows to
solve only one family of problems. Its techniques are usually unsuited
for programming other domains. In reality, however, domain-specific
programming must be seen as a matter of degrees rather than as a
strict segregation. To try to better understand its nature, this section
will outline the state of the art of domain-specific programming
techniques. However, because the field is so broad, it does not aim
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Chapter 1: Domain-Specific Programming: Benefits and Methods

to be an exhaustive review of related literature. Instead, it aims to
highlight general trends with a selection of relevant works.

Domain-specific programming is a technique that is applied to a
variety of programming methods and tools. The following are some
examples of the forms it can take:

graphical languages;

textual languages;

libraries;

development environments;

analysis tools and framework.

A very thorough review of domain-specific programming techniques
can be found in [65], with the exception of graphical languages.
In [56], another attempt at classification focuses on a set of domain-
specific features and their availability in various tools. As of Wile’s
article [96], it contains an analysis of the pitfalls specific to varied
domain-specific techniques.

Libraries By the definition above, most libraries are domain-specific
because they use the vocabulary of the domain they model. In fact,
any end-user program is domain-specific. This gives another hint
towards the pervasive presence of domain-specific thinking in the
very act of programming. However, it is not of great interest to
our discussion, because it makes of domain-specific programming
an intractable problem. Only when domain-specific libraries are
considered in a very restricted sense, are they interesting targets
for research, such as in the examples below. The notion of “active
libraries” [93,128] was coined to describe libraries that take part in their
own compilation. A recent article by Guyer and Lin [39] demonstrates
how domain-specific semantic properties of libraries can be utilised by
the compiler for optimisation.

Domain-specific languages Throughout this thesis, our minds will
focus on one central domain-specific programming technique: do-
main-specific languages. Indeed, this dissertation’s approach for do-
main-specific programming is to build on top of existing program-
ming systems, and most such systems are based on textual languages.
By concentrating on domain-specific languages, we scope the problem
in such a way that makes it possible to solve.

23



Once again, we must observe that, to grasp domain-specific lan-
guages requires nuance. There is no definitive or standard technique
to create domain-specific languages. In fact, certain designs of librar-
ies go far enough in changing code that uses them so that it behaves
as a domain-specific language. A programming technique qualifies
as a language if it controls some or all of its syntax, semantics, and
correctness properties. This gives it a strong enough identity to be
much more interesting than mere libraries.

Domain-specific languages are an old idea. In 1966, Peter Landin
discusses a “family of unimplemented languages” that can be instan-
tiated for a given domain [55]. While this article does not mention do-
main-specific languages, it postulates that “the next 700 programming
languages” would be designed with particular aptitudes towards par-
ticular areas through their physical appearance and logical structure.
Landin’s approach to language families has however not seen wide ac-
ceptance, although modernised forms of the idea regularly reappear.
For a recent view of these efforts in generating new languages, see
Czarnecki’s overview [27].

Predicting the importance of domain-specific languages, and their
impact on programming habits, is a recurring theme. Recently, Taha,
in a short but far-sighted pamphlet [87], argues that domain-specific
languages will bring programming into everyday lives because their
clear relation to their domain makes them easy to use for everyone. He
exemplifies this idea by describing a household formalised as a series
of needs in terms of grocery lists, recipes, health, etc. Without going
that far, domain-specific language had been recognised as an import-
ant programming technique for a long time. For example, Bentley
noted how programmers employ what he called “little” languages [7]
as a technique to solve specific problems, which he exemplifies in a
language to process surveys. The idea that domain-specific languages
would become a central programming paradigm is implicit in the
popular term of “fourth generation” languages—following second
and third generation, general-purpose languages. Confirming the
argument in the introduction of this chapter, “fourth generation”
languages have been reported as significantly more productive than
equivalent general-purpose languages, for example in Klepper and
Bock’s 1995 study [49]]. It must however be noted that I am not aware of
very recent studies comparing the relative benefits of domain-specific
languages and modern general-purpose languages. In the field of
software engineering, the idea of “software factories” [26]—a devel-
opment processes modelled on the efficient 1970s Japanese factories—
led to analysing the role that domain-specific languages can play in
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such standardised designs. Amongst other, Steve Cook emphasises
the agility that domain-specific languages bring to software factor-
ies [20, 21]. In Microsoft Visual Studio’s conception of software
factories, domain-specific languages play an important role [22, 94].
Researchers considering specific domains of application have also
proposed domain-specific languages to overcome increasing com-
plexity and to reduce defects, for example in communication services.
Consel and Réveillere propose a domain-specific language paradigm
for defining communication services [19]. There domain-specific
language directly represent protocols such as map, guaranteeing
conformance with the protocol while supporting application-specific
variations. Burgy, Réveillere et al. propose a lower-level approach [13]
named Zebu, which uses a domain-specific language inspired by
RFC specifications to define new protocols. There, domain-specific
knowledge can be used to verify certain properties of protocols, and
to generate relatively efficient parsers.

With a broad agreement on the use of domain-specific languages,
researchers started considering their specific nature when compared
to general-purpose languages. The multiplication of domain-specific
languages, and their inherently unique nature, led to an important
literature of experience reports. For example, one can consult the
proceedings of the yearly workshop on domain-specific modeling [77,
76], or those of the workshop on domain-specific program develop-
ment [57]. The general trend in these reports is to favour hybrid
graphical and textual environments. Vandeursen et al.’s annotated
bibliography [92] concentrates on textual languages, and contains a
a list of example domain-specific languages in the fields of financial
products, multimedia, telecommunication, etc.

Graphical languages The previous chapter contained an example
of a graphical programming environment for a graphical domain.
However, these systems are not limited to domains that are themselves
graphical. The following two examples relate to domains that are not .
In 1975, Zloof described a graphical language to query relational data-
base “by example” [97]. In a completely different domain, Spectra [89]
is a graphical tool to program the elements that compose a software-
defined radio. Graphical domain-specific environments are popular,
and many are developed every year. However, this thesis will leave
these systems aside.
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1.2 Hosting multiple domains

In the previous chapter, we discussed complete domain-specific lan-
guages. Such languages provide by themselves all that is needed to
solve a domain-specific task. However, this thesis will not consider
complete languages. Indeed, a typical software system is composed
of various subproblems. Many of these subproblems are domain-
specific, but not all are in the same domain. Composing modules,
defining a graphical user interface or querying data are domains
found in almost every modern software system. Other domain-
specific problems are less common but may represent a considerable
partof a program’s value: calculate physical forces on objects, perform
statistical analysis of data, implement a communication protocol or
communicate with hardware devices.

To take a concrete example, a spreadsheet application will have
a graphical user interface, may store and retrieve data using soL
databases and needs to parse cell expressions to evaluate them. Each
of these three tasks becomes easy if a corresponding domain-specific
language can be used to solve it. However, because multiple domains
exist in a single application, multiple domain-specific languages must
coexist in the code. This rules out traditional monolithic domain-
specific languages which replace the general purpose programming
model by their own. To contain and integrate the different domains
composing the application, a shared programming infrastructure is
required. It must provide for all needs of the various domains, like a
substrate holding and nourishing plants.

A common solution is to consider each domain as a module in
the program, and the problem of bringing them together as one
of module composition. The substrate itself is then provided as a
domain-specific language for module composition. For example, Java
EE web applications are typically composed of a war archive. It
contains compiled Java and XML files defining various elements of
the web application, each using specialised libraries. The component
elements are brought together in the web.xml configuration file that
assigns each element to a predetermined role. This file is written using
XML according to a domain-specific schema—which is arguably not
the most attractive example of a domain-specific language, but that
does not influence the substance of this example. Its format allows
roles such as generating a page at a given location, as well as more
specialised roles such as controlling security or accessing databases.
Each component is coded in a single domain—output a web page
or control access—without relation to the rest of the program. The
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application server configured by the web.xml file creates a substrate
that allows the components to communicate.

However, this approach suffers from its inflexibility. We recall that
the power of domain-specific programming comes from reducing the
general programming task to that of configuring predefined domains.
As an example, a web.xml file configures access control by providing
one or many filters that check whether a given urL can be accessed.
But because this domain forces access control to be defined in terms of
UrL, the infrastructure cannot be used to control access to subelements
of a page. More generally, by making the substrate a domain-specific
language forces the application to be in that domain. This consider-
ably limits the virtues of domain-specific programming as laid out at
the beginning of this chapter. Indeed, the argument goes that almost
any program contains subproblems that benefit from domain-specific
programming. Because programs are so diverse, the argument would
become considerably weaker if reduced to only those categories of
programs for which a domain-specific substrate language exist.

For this reason, instead of composing domain components with
a domain-specific language, a general purpose language should be
used. This allows arbitrary components to be integrated and allows
them to be extended or connected using arbitrary logic. Furthermore,
it does not require every component to be written using domain-
specific code, but allows structuring the program using the general
purpose language and select domain-specific languages only where
they provide the most benefit. However, it raises the question of
what makes a general purpose programming language fit for this
purpose. The means through which general purpose languages can
host domain-specific components will occupy us throughout most of
this dissertation. To start this discussion, we will discuss the nature
of domain-specific embeddings, and the form taken by embedded
domain-specific languages in a general-purpose host language.

The nature of embeddings When speaking of any programming
language, it is necessary to separate the following aspects of the
program:

1. its syntax is the words that can be used and their structure;

2. its semantics is the way in which domain-specific fragments are
evaluated;

3. its data is the form and behaviour of values in domain-specific
fragments;
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4. its correctness are properties, usually defined in terms of types
or grammatical structure, that allow to guarantee certain prop-
erties of fragments a priori;

Both domain-specific and general purpose languages are defined
in terms of all four of these aspects. However, a domain-specific
language embedded in a general purpose host need not define all
aspects for itself. It is usually preferable when aspects from the
general purpose host can be preserved. This simplifies the process
of writing embedded domain-specific languages, and concentrates
changes where they matter most. Depending on the domain that is
being modelled, different aspects are concerned. This explains why
there is no unique solution for embedded domain-specific languages.

Furthermore, the degree of modification required for an aspect can
vary. When considering semantics, one domain may require a single
element of the evaluation to be changed, another may require the
semantics to be changed completely. For example, a domain-specific
language to support parallel programming may provide a simple
parallel for loop, which only requires the semantics of this operation
to change. On the other hand, a more complete language that supports
arbitrary parallelism may require changing the semantics of almost all
operations so that they support transactions, shared memory et cetera.

For the sake of our discussion, the nature and the degree of change
between the host and the embedded domain-specific language can be
represented using the following graph. A domain-specific language
that does not share any element of the host would be represented as
follows.

syntax

correctness data

semantics

On the other hand, a domain-specific “language” that is composed of
a library only corresponds to the following situation.
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syntax

correctness «——— e data

semantics

This corresponds to the usual domain-specific capabilities of most
existing general purpose languages. On the other hand, the former
case is the “golden quadrilateral” of full support for domain-specific
programming. In the following two chapters, which compose the
first part of this dissertation, I will present two techniques that aim
to maximise the surface of domain-specific embedding supported by
Scala. Neither offers the full quadrilateral of the optimal solution
but both propose triangular surfaces missing only one aspect of
domain-specific embeddings. In Chapter |2} correctness is missing or
limited while Chapter 3| specifically concentrates on the question of
soundness. The limitations observed in these chapters will call for
extensions to the host language specifically to allow full embeddings,
which will be the subject of the second part of the dissertation.

An embedding that redefines all elements of the host language is
obviously very flexible. This allows the domain-specific language to
be tailored exactly to the needs of the domain. However, thereis also a
strong benefit in reducing the embedding surface. That is, it ought to
modify the smallest possible number of aspects of the host language
and in the least possible manner. The reasons are twofold. First: one
reason to embed domains as opposed to using standalone languages
is in order to reuse the host language’s infrastructure. Second, and
more fundamentally: by making the embedded domain completely
separate from the remaining of the program, interaction between the
two parts becomes less straightforward. For example, if the embedded
domain system has its own type system that does not rely on that
of the host, defining soundness of domain-specific code will require
additional machinery to interface it with the host. On the other hand,
if soundness of the domain can be defined in terms of host language
types, the relation will be automatic. This is why, in practice, domain-
specific embedding techniques must not maximise the potential scope
of their embedding, but also allow flexibility in defining how much of
it is used for a given embedding.

29



No matter how shallow the modification called by a domain, the
point where domain-specific and general-purpose code meet forms a
boundary. An embedding technique must provide for its definition.
The table below lists the typical nature of issues that arise for the four
aspects of embeddings.

Aspect  Typical issues

syntax Detecting fragments of code that are in domain-
specific syntax.
semantics No major issues if domain-specific operations are
disjoint from those of the host. Otherwise, similar
to syntax.
data If data from the host program is meaningful in
domain-specific fragments, it should be accessible
as domain-specific data. Data representation must
automatically be converted between domains.
correctness  Similar issues as in syntax and data embeddings.
Furthermore, may require defining one type discip-
line in terms of the other to obtain a notion of overall
type safety.

Of course, as in any exercise of language design, the tasks de-
scribed above ought to be solvable in such a way as to require as
little effort as possible. For programmers using an embedded domain-
specific language, the solution should be transparent and not require
any knowledge of the embedding technique. This means that the
boundary conflicts should all but disappear as if domain and general-
purpose code exists in a completely integrated system. For those
embedding new domains, it should be lightweight to create specific
languages. For both, the process should be as safe as possible.

1.3 Related work: techniques to embed languages

The previous section laid out the reasons for preferring embedded
over self-contained domain-specific languages, which raises the ques-
tion of what embedding technique to employ for what purpose. In
highly dynamic languages such as Scheme [83] or Ruby [24, 25],
embedding techniques are relatively well understood. However,
in languages with a less flexible syntax, and particularly statically-
typed languages, the question of how to best embed domain-specific
languages remains. Broadly, embedding techniques can be separated
into the following families:

1. custom preprocessors and compiler front-ends;
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2. macro systems and embedding frameworks;
3. staged metaprogramming;

4. library-based integration.

Custom solutions To this day, the usual approach to embedding in
statically-typed languages remains the use of custom preprocessors.
The original source contains interleaved host language and domain-
specific code. The latter has different syntax, semantics and correct-
ness properties, which the host language compiler cannot understand.
Therefore, the preprocessor modifies the source before it is seen by
the compiler of the host language. By replacing domain-specific frag-
ments with host language expressions that encapsulate the domain-
specific behaviour, it generates a new source that the host language
compiler can utilise.

As a first step, the preprocessor must detect the boundaries of
fragments written in the domain-specific language. Because the
preprocessor is executed before the compiler, it does not have access
to the structure of the program. Any understanding of the structure
that may be required to discover the boundaries must be calculated by
its own logic. This is why, in practice, most preprocessors require that
domain-specific fragments be enclosed by unique character sequences
that render the task of finding boundaries trivial.

This approach makes the preprocessor blind to the environment
in which the domain-specific fragment exists, which does not allow to
tightly bind the fragment and the rest of the program. To overcome
this blindness, preprocessors usually rely on two methods. A first
solution is to optimistically assume that the environment provides
whatever values or functions are needed to correctly rewrite the
domain-specific fragment. The transformed host language code im-
plicitly contains the assumptions made about the environment in the
form of references to values for example. When compiled by the
host-language compiler—or when it is executed—the assumptions
are either validated or an error is produced. However, because
the assumptions are tested against the transformed program, errors
cannot be reported in terms of the domain-specific code. In a second
solution, the preprocessor will restrict the interaction between the
domain-specific fragment and the rest of the program. Only values
of a restricted set of types that map directly to the domain can be
referenced in the fragment.

Because of the limited understanding of the program’s structure
by the preprocessor, programs are awkward to write and not very
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safe. Nevertheless, in many cases, the benefits of domain-specific
programming outweigh those costs. Oracle’s Pro*c/c++ [70] is a
rather old-fashioned but popular embedding of soL in ¢ and c++
code, exemplifying the strength and weaknesses of preprocessor-
based embeddings.

To overcome some of the limitations of preprocessors, it is possible
to preprocess domain-specific fragments as part of the front-end
of the host language’s compiler. By doing that, it is possible to
detect domain-specific fragments simultaneously to parsing the host
language’s own grammar. This gives more flexibility in detecting
the beginning and end of fragments. Scala’s XML syntax [34] is an
example of a domain-specific language embedding in a compiler’s
front-end. The domain-specific parser may also have more access to
compiler-generated data about types and names. However, parsing
source code must usually be completed before the compiler can cal-
culate program properties. A compiler extension that does domain-
specific transformation relying on such properties would have to
juggle with mutually dependent compiler and domain-specific data.
This makes it a very subtle program.

Specialised embedding tools Macro systems provide tools to define
preprocessor-like transformation on source code. The C preprocessor,
for example, can be used with domain-specific programming in mind,
although it remains a very crude tool. Other textual transformations
tools, such as sed or awk, are also often used as preprocessors. How-
ever, such systems do not utilise any knowledge about the structure
of the program to verify macro transformations, or to provide useful
abstractions.

So called “hygienic macros” were originally proposed by Kohl-
becker et al. to guarantee that macros do not violate the language’s
identifier binding discipline [50, 17]. Although originally for Lisp,
similar hygienic propositions appeared on macro systems for static-
ally-typed languages. The evolution from unsafe textual macros to
systems acting on the syntax tree or on other high-level language ele-
ments is laid out in an article by Brabrand and Schwartzbach [10]. The
J1s tool [6] preprocesses Java code according to external transforma-
tion procedures described in the Jak language. Other systems such as
Ms [95] or Jsk [5] use macro instructions interleaved with source code,
like the c preprocessor, but acting at the level of syntax. A system
with a more general purpose, but widely used to embed domain-spe-
cific languages is the c++ template macro infrastructure [3]. Finally,
MetaBorg [12] is a domain-specific language embedding framework,
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which uses rules to define syntactic rewrites and specialised tools for
program transformation.

Languages with staged metaprogramming stand out amongst hy-
gienic rewrite tools. They offer a level of power and of safety un-
equalled by other systems. I will however postpone the discussion
on that technique to Part[ll] of this dissertation, where it will feature
prominently.

Embedding using libraries Instead, let us go back to domain-spe-
cific languages using a simpler embedding infrastructure. In fact, the
last family of embedding methods we want to discuss does not use
any tool beyond existing general-purpose language abstractions. Al-
though used in many programs for a long time, Hudak first made ex-
plicit the properties of this embedding technique [42], which he called
“modular monadic interpretation”. No specialised tool rewrites a
program’s syntax to transform domain-specific fragments. Instead,
it is data structures that convey the look and feel of syntax. The
domain-specific embedding library interprets the data structure as if
it were the syntax itself. Others have extended Hudak’s interpretation
technique to generate c++ code instead [45]—effectively compiling
the embedded fragments—or to make the interpretation more flexible
and support optimisations [40].

However, the syntax of domain-specific languages embedded us-
ing Hudak’s technique remains very close to that of the host. This is in
many cases an advantage, as Leijen and Meijer discuss in a proposed
embedding for a database querying language [60]. However, to make
it a broadly usable embedding technique, more work is needed on
the possibility to modify the host language’s syntax. This will be the
subject of the next chapter.
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Chapter 2

Using Libraries to Embed
Domain-Specific Languages

Scala offers abstractions that act on syntax, and others that allow to
design complex libraries. Amongst the former are techniques like
infix operators defined as methods, or variable-length argument lists.
Amongst the latter are implicit conversions, which allow to convert
objects from one type to another automatically and based on need.
In the absence of these abstractions, as is the case in Java, syntactic
embeddings are very limited [36]. But by leveraging these tools, this
chapter discusses a method to embed a domain-specific language with
a specific syntax, using only libraries.

I originally introduced the technique [31] under the name of
"ZyTyG” (Zygotic Type-Directed Growth). Its key idea is that em-
bedded domain-specific fragments will remain valid expressions in
the host language. From a programmer’s perspective, their look-and-
feel will be domain-specific. However, they will be executed as Scala
expressions, thereby reconstructing a representation of the domain-
specific fragment as intended by the programmer.

In the classification of embedded domain-specific languages de-
scribed in the previous chapter, ZyTyG covers the following surface.
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syntax

correctness data

semantics

The technique’s primary goal is to provide domain-specific syntax to
act on domain-specific data. As was mentioned above, the normal
evaluation semantics of the host language lead to creating a repres-
entation of embedded fragments, which must then be given their
own domain-specific semantics. In simple cases, these semantics can
be represented in terms of operations on data structures of the host
language. This is typically the best solution if the domain-specific
language is used to describe such structures. For example, consider a
language of time expressions like “1 hour 13 minutes” that directly
represent instances of a Time class. Alternatively, the library can
provide a domain-specific interpreter that allows arbitrary semantics
for the embedded language. However, this entails a runtime penalty
that may not suit certain use cases.

While ZyTyG offers a relatively high flexibility in terms of embed-
ded syntax and semantics, it currently lacks a convincing ability to test
correctness. To some limited degree, the conformance of domain-spe-
cific fragments to correct syntax can statically be guaranteed through
the host’s type system. However, ZyTyG is quite inept at guaranteeing
the soundness of the behaviour of domain-specific fragments. Indeed,
as we will see, host language types are utilised to provide the domain-
specific syntax. Whilst these can be extended by parameters that
represent domain-specific typing properties, soundness can only be
checked if the syntactic form of the embedded language matches the
typing discipline of the domain-specific language.

Another obstacle with ZyTyG is that the languages that it can
represent are limited, as their grammar must be compatible with that
of the host language. In reality, this problem is less overwhelming
than intuition would have us believe. First, the family of embeddable
grammars can formally be defined. This facilitates reasoning about
their design. Second, many languages are naturally inside of—or very
close to—this family, which seems to correspond to a natural form of
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domain-specific languages. For example, we will see in that sqL
is a member of this family, with very small exceptions.

Despite its restrictions, we want to consider ZyTyG because it is
a domain-specific technique that does not rely on specialised lan-
guage abstractions. It covers an aspect of embedded domain-specific
languages—syntax—that is usually provided using preprocessors.
Instead, ZyTyG aims to utilise already existing abstraction in order
to cover as much of the embedding surface of domain-specific lan-
guages. We will see that the resulting embeddings are more flexible
than those obtained by most preprocessor or even macro systems,
and similar in nature to those found in dynamically-typed languages.
Furthermore, ZyTyG, or variations thereof, are now commonly used;
the attraction of domain-specific programming is so strong that many
Scala developers overlook its restrictions. By describing ZyTyG, and
by further formalising its properties, it it possible to better grasp the
reality of embedded domain-specific programming today.

2.1 Growing syntaxes using token cells

The first half of this section describes how to design a library that
embeds a given domain-specific language from a syntactical point
of view. The second half discusses how domain-specific expressions
should be constructed so that the code of the expression can be
retrieved. Strategies that make the boundary between the domain
and the host more permeable are discussed in the next section. This
technique is implemented using Scala as the host language. To my
knowledge, no other statically-typed language currently supports
all necessary features to implement ZyTyG. It is of course part of
my argument that languages wishing to support domain-specific
programming ought to consider these features.

Growing a syntax The idea underlying this technique is to define
the grammar of a domain-specific language in terms of a sequence
of host language identifiers for objects and methods defined in the
embedding library. Each object or method identifier corresponds
to one closed token in the embedded language. A token is said
to be closed if it has a unique form—for example keywords. This
differs from open tokens, which can take multiple forms—for example
numbers—and that will be discussed in the next section. The objects
defined in the library and representing keywords are called “token
cells” and contain one or more “token methods” following a structure
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that is discussed below. A set of token cells with their methods defines
the grammar of an embedded language.

To start, we shall consider how to embed languages whose only
valid sentence is fixed. The language defined by grammar G is such
a language.

Gy := abc

This language can be embedded in Scala by using the following
library.

object a {

def b(next: c.type) = next
}
object c {}

In this example, the closed tokens a and c are defined as cells, while b
is defined as a method. Cell a also serves to mark the beginning of the
domain-specific fragment. Cell c is the end of the fragment. Note that,
at this point, nothing prevents partial fragments that do not reach c.

If the syntax for method calls in the host language were like that of
Java, the library above would obviously not parse GG;. For it to work
requires the host language to support calling single-parameter meth-
ods as infix operators. In other words, it requires that the expression
a b c be equivalent to a.b(c). This is the case in Scala, originally
with the idea of supporting specific domains such as mathematical
expressions. Here, we can see how this feature is more broadly useful
to domain-specific programming because it allows to break out of the
method-calling paradigm of the host language and subvert it to embed
another language.

The type c.type of the next parameter of method b is a Scala
singleton type. Only two values are of that type: the object named
c and null. This type guarantees that a unique cell instance is used
to parse token c. The fact that Scala singleton types also allows null
is not desired in this case because the parser can thereby exit in an
uncontrolled manner. Nevertheless, it provides static guarantees on
the identity of cell instances that will become more relevant later, once
cells are extended with parsing state.

Longer sentences can easily be parsed by adding a method to object ¢
on the model of that added to a.

object a {
def b(next: c.type) = next
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object c {
def d(next: e.type) = next

}
object e {}

By using the same system as many times as needed, it is possible to
write grammars for any arbitrary sequence of closed tokens, assuming
the following two criteria are met:

1. that each token is a legal value or method identifier in the host
language;

2. that the number of tokens in the sequence is odd.

Of course, fixed sentence languages are only of limited use; any mean-
ingful grammar will at least contain choice and repetition structures.
The two languages defined by EBNk grammars G and G3 contain
slightly different forms of choice structures.

Gy = a(bc|de)

Gs = ab(c]|d)
Both can easily be encoded as a library. Grammar G2 simply requires
that token cell a defines a separate method for both of its successor
tokens: b and d.

object a {
def b(next: c.type) = next
def d(next: e.type) = next

}

Grammar (3 requires a host language mechanism so that multiple
object types can follow b. Various solutions are possible, for example
using subtyping. However, in terms of its real-life behaviour, the
most satisfactory implementation uses overloading and yields the
following implementation.

object a {
def b(next: c.type) = next
def b(next: d.type) = next
}
object c
object d

Grammar G4 and G5 are equivalent but demonstrate two methods of
obtaining a repetition in an EBNF grammar.

Gy = af{ba}
G5 = alabG5
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Implementing such a repetition in the language library is done by
using the host language’s own recursion mechanism.

object a {
def b(next: a.type) = next

With these techniques, the three basic structures of EBNF grammars—
sequence, choice and repetition—can be encoded in a library for the
host language.

You may notice that, because the parsing is defined in terms of
host language types, the compiler will be able to detect various syntax
errors in the embedded language. However, these errors are reported
in terms of the structure of the embedding library, which may be
confusing. The following table lists a number of typical errors when
using the parser of grammar G.

Expression  Error

a b ¢ No error (correct expression).

a b x Not found: value x.

a x ¢ Value x is not a member of object a.

a b a Type mismatch; found: a.type; required: c.type.

Furthermore, if a token cell is used in various locations in the program,
the type of that cell must accept all derivations from any of the
locations it is used. In that, the quality of type checking will decrease
if the same token is used in multiple places in the grammar. For
example, a library that encodes a grammar containing token c at
two separate positions will also accept fragments that are missing all
tokens required between the two c tokens.

Building a representation The technique described above allows
fragments of domain-specific code to be embedded in the host pro-
gram and accepted by the host compiler, without any preprocessing.
To continue the embedding requires to create a useful representation
of the fragment.

When the expression that encodes a domain-specific fragment is
executed, the resulting value is whatever token cell was used last. This
defines the point reached in the grammar at the end of the parsing.
For some grammars, such as Gi, G2 or (3, knowing the end point
is sufficient to reconstruct the entire domain-specific expression. In
most cases, however, more information is needed. In particular, the
number of iterations must be stored in case of repetitions, and the path
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taken by choices in which branches do not remain strictly separate
must be recorded. The first case can be seen in grammars G4 and G5,
whist the second is demonstrated in G¢ below—which also contains a
repetition.

G¢ = af(]|ca}

A step in the parser happens when a method is called on the pre-
vious token cell, passing it the next token cell and thereby consuming
two tokens in the grammar. For example, in grammar G, if the parser
is in the state of token cell a, a step is when method b is called on a with
parameter c, thereby consuming tokens b and c and leaving the parser
in the state of token cell c. If that step corresponds to a repetition or
to a choice, the information that needs to be recorded is temporarily
available in the body of the method. Storing it in a state field of the
resulting token cell will make it available at the next step, where it can
be forwarded in the same manner. At the end of parsing, the token
cell returned to the host will define the end point in the grammar by
its type, and the choices and repetitions made during the parsing will
be available in its state field.

The following example encode the language defined by grammar
G in such a way that the host program can reconstruct the parsed
domain-specific fragment.

class A {
var state: List[String] = Nil
def b(next: A) {

next.state = "b" :: state

next

}
def c(next: A) = {

next.state = "c" :: state

next

}

def a = new A

In practice, as we will discuss in it is usually more practical to
return in the state the entire list of parsed tokens, including those that
could be reconstructed from the final parsing point.

The embedding technique describe above is attractive because it al-
lows domain-specific programming in languages completely different
from the host using only libraries. For a developer, there are no addi-
tional constraints in terms of tooling or workflow when compared to
any other library. Furthermore, because the host language guarantees
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safe separation between libraries, it is easy to use different embedded
domain-specific languages, as long as they are strictly disjoint.

The technique, however, puts strong constraints on the family of
grammars that can be used to define domain-specific languages. The
supported grammars are formally categorised in we will see
that, while limited, they have the advantage of being easy to work
with. Another constraint comes from the fact that the host language
restricts value and method identifiers. For example, and for obvious
reasons, a method cannot be called “(”, which prevents embedding
parenthesised languages. However, by nesting grammar fragments,
it is possible to use host language parenthesised expressions within
domains-specific code. We will see in §2.4|that, with a little ingenuity
and very few compromises, it is conceivable to embed complex, real-
life languages.

2.2 Implicit conversions between domains

This section is concerned with the boundary between domain-specific
expressions and host programs. We will discuss three questions
pertaining to domain boundaries:

1. how to utilise token cells and token states from domain-specific
expressions to execute domain-specific behaviours;

2. how to use values or expressions from the host program by
adding open tokens to domain-specific expressions;

3. how to use the logic of the host program to parameterise the
structure of domain-specific expressions or to reuse fragments
thereof.

Question 1: Executing domain-specific behaviours Depending on
the domain, the domain-specific expressions embedded in the host
program will have to be calculated, transformed, interpreted, shipped
to a third-party tool, etc. However, the details of that process are very
much dependent on the domain being considered and beyond the
scope of our discussion. For the time being, we can simply assume
that the domain-specific library provides a function that calculates the
result of a domain-specific expression given a token cell and the stored
information about the parsing path.

The only relevant property of that function is whether it returns a
value for the host program, or not. A value is returned, for example,
in an sQL query expression. In this case, the function will take the soL
expression, transform it into a string, send it to the database engine,
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and return a set of relations to the host language. On the other hand,
a value is not returned in an sqL delete expression. In that case,
the function will again send the string of the query to the database
engine. But the function has no meaningful result—assuming errors
are reported using exceptions. The purpose of the domain-specific
expression comes from its side-effect.

If a value is returned, that value can serve as the glue between
the domain-specific expression and the host program. This technique
requires the host language to have abstractions that automatically
convert values based on their types, which Scala does using implicit
conversions (see §6.26 in [66]). Implicit conversions are specially
marked, single-parameter methods that the compiler will automat-
ically add to code if that code cannot be typed and if adding the
conversion makes it typeable. For example, consider the following
definitions.

implicit def x2y(x: X): Y = new Y
def f(y: Y) = ...

Without implicit conversions, the expression f(new X) will not com-
pile and report a type mismatch between X and Y. With conversions,
however, the expression will be compiled by automatically modifying
it to f(x2y(new X)).

In the embedding library, implicit conversions are defined from
all token cells that correspond to a final state of the parser, to the
resulting host language value. These conversions calculate the host
language values resulting from the domain-specific expressions. Be-
cause implicit conversions in Scala are simply defined as methods,
they can implement the function that calculates the domain-specific
expression. In the example below, the implicit method evaluate6
evaluates a fully-parsed expression of grammar G to a host language
Int value.

implicit def evaluate6(last: A): Int = {
. // evaluate domain-specific expression

}

val dsResult: Int = a b ac a

Because the domain-specific expression a b a ¢ a is valid in Gg—
its last state is of type A—, the compiler automatically applies it to
evaluate6. The domain-specific expression is therefore computed to
a host language value.

The advantages of this solution are multiple. It is very simple to
use. The relevant implicit conversions are imported with the rest of
the embedding library. Because the user does not see the conversions,
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which are automatically inserted by the compiler, the domain-specific
expressions feel perfectly embedded. The solution is also relatively
safe. Because the designer of the library has been careful to only define
implicit conversion from final parse states to host language values, any
domain-specific expression that is incomplete is reported as erroneous
by the compiler. Similarly, if the logic of the host program expects a
value that the domain-specific expression cannot provide, there will
be no available conversion and an error is reported. However, these
errors suffer from a similar problem as those reported against the
syntax of the domain-specific expression by the embedding library:
they relate to the embedding library, not to the domain-specific code.
Errors such as “type mismatch; found: a.type; required: Int” will be
generated. An error like “domain-specific expression 'a b a’ does
not yield a value of type Int” would have been preferable.

If no value is returned by the domain-specific expression, which
only exists for the purpose of its side effects, the strategy above does
not work. One solution is to require the expression to be enclosed
in a computation method expecting a final parser cell, or that such a
method be explicitly called on the cell. For example, let us extend the
final state of grammar G'¢ with a computation method.

class A {

def evaluate: Int = {

. // evaluate domain-specific expression

}
def a = new A
(a b a c a).evaluate

Method evaluate serves the same purpose as the evaluate6 implicit
conversion above. However, incorrect behaviours can silently be
accepted by the compiler if the user forgets to use the computation
method. In that case, neither will the compiler check that the expres-
sion is in a final state, nor will it be evaluated at runtime.

Question 2: Accessing host values Accessing values from the host
program from within the domain-specific expression is similar to the
previous problem. Values from one domain must be transformed into
another with the help of translation functions. It will therefore be
solved in a similar fashion.

In the previous section, a domain-specific expression is described
as a sequence of identifiers defined in the embedding library. Iden-
tifiers are either token cells (objects), or methods. Methods are fixed,
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but for token cells, the logic of the embedding does not necessarily
require that the cell be identified directly. Instead, it suffices that the
host language value that is located at that point evaluates to a cell. In
particular, it is possible to use a host program value as long as there
exists an implicit conversion from that value to the correct cell. In
other words, by defining an implicit conversion from a host language
type T to a token cell, that token cell can be used to accept an open
token covering all values of type T'.

For example, consider grammar G~ that is not only composed of
tokens but also comprises one value.

G7; := abnumberde

This value can either be written in the domain-specific expression as
a constant or as a reference to a number within the host program.
Examples of valid expressions are “a b 4 d e¢” or, assuming that
“four” is defined in the host program, “a b four d e”. An embed-
ding library for this language can be written as follows.

object a {

def b(next: c.type) = next
}
object c {

def d(next: e.type) = next
}
object e {}

implicit def number2c(n: Int): c.type = c

By defining an implicit conversion from all host language integers
to token cell ¢, the latter becomes an open token for numbers in the
grammar.

This logic even allows arbitrary host-language expressions to be
used to calculate the value, for example in “a b (4xfour) d e”. Cells
that are implicitly constructed from values in the host program and
that correspond to open tokens are called “value cells”. The obvious
drawback of this approach is that value cells are only usable in the
grammar where token cells are allowed. We will discuss possible

solutions in the next section.

Question 3: Parametric expressions Finally, we must remember
that, with the technique we have been discussing, embedded domain-
specific expression are also valid host language expressions. More
precisely, for every two additional tokens corresponding to a parsing
step, a new host-language expression is defined that returns a new
token cell object. This cell corresponds to the state of a partially parsed
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domain-specific expression. It is quite possible to directly manipulate
token cell values in the host program to parameterise the structure of
the domain-specific expression.

For example, assume we want to write a domain-specific expres-
sion in grammar G4 where the number of repetitions depends on the
state of the host program.

Gy := af{ba}

The implementation of G4 as an embedding library with state inform-
ation can be done as follows.

object a {
var repetitions = 0
def b (next: a.type) = {
next.repetitions = repetitions + 1
next

}

A valid expression in G4 for an arbitrary number of repetitions
“numRep” can be generated using a fold operation, such that at every
step a new token cell is generated and passed to the next. In this
example, every token cell is final in the grammar, but this is not
required: it is quite possible to have the host program work on non-
final states of the domain-specific expression.

(1 to numRep).foldLeft(a)((prev, n) => prev b a)

Another use of the same technique is to build commonly-used
fragments of domain-specific expressions and complete only the re-
maining portion when needed. For example, assuming a domain-
specific language for sqt, it is possible to store soL fragments that
select from known tables in the database, but without defining any
condition. At different places in the program where specific selections
are needed, the original fragment can simply be completed with the
necessary condition. This powerful ability to work with domain-
specific languages goes far beyond what is conceivable in traditional
preprocessor embedding techniques.

We have seen how implicit conversions can be used to entirely
define the boundary between domain-specific expression and the
host program. When compared to alternative explicit solutions,
implicit conversions are well suited for this task because they balance
the conflicting requirements of well-defined yet transparent domain
limits. On one hand, the boundary is constrained and safe because
it is entirely established in terms of the implicit conversions provided
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by the embedding library. On the other hand, integration can be very
tight because implicit conversions work at the level of types and are
therefore impervious to the manner in which the shared values are
obtained. In fact, we can here see a first example where statically-
available types are beneficial over dynamic ones for domain-specific
programming.

2.3 A grammar of library-embedded languages

We have seen in the previous two sections what constraints are put
on the grammar of domain-specific languages by the embedding
technique. As we will see, some of these constraints may be re-
laxed by further stratagems employing additional language features.
However, reasoning about embeddable languages is already thorny
without added complexity. I try to demonstrate in this chapter that
library-based embeddings can be used for complex domain-specific
languages. These are languages such as 1so sQL, whose ZyTyG-
based embedding is discussed in the next section. To reason about
such a complex grammar requires a formalism encompassing the
constraints of ZyTyG. For this purpose, this section introducing a new
class of grammars called “modulo-constrained regular grammars”.
Further relaxations to ZyTyG’s constraints will be discussed within
its framework.

The informal limitations observed during the description of ZyTyG
can be summarised as follows:

e tokens are parsed using one of two separate techniques: cells
(objects) and methods;

e both cells and methods can parse closed tokens—tokens that
correspond to fixed keywords;

e only cells can parse open tokens—tokens that may be any of a
class of values;

e for the moment, let us assume that parsing can be described in
terms of a deterministic finite state automaton, meaning that the
technique can at least parse regular languages.

To start, let us consider the last statement in more detail. We had
previously used a notion of “step” to describe the evaluation of a
parser, similar to a step in an automaton; the main difference being
that a step consumes two tokens. In contrast, below is a description of
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a finite state automaton that accepts the same language as grammar
Gi(a b c).

Qambmc
N

The initial state H is the state in which the parser is available—when

the embedding library is in scope—but where no domain-specific
expression is being parsed. As long as the starting marker a is
not consumed, the parser remains in that state. Upon consumption
of token a, the parser moves to state p;, which corresponds to the
instantiation of token cell a. Consumption of token b happens through
the selection of method b on token cell a and leads to state p,. Note
that this state is drawn as a smaller circle to indicate that it does
not correspond to a token cell. Finally, token c is consumed, which
happens by the argument being passed to the previous method. The
state p3 reached at this point corresponds again to a token cell, which
explains the larger circle. It is also a final state for which an implicit
conversion back to a host value exists, which is represented by a
double circle. The steps of the parsers are recognisable as double
transitions between large states.

If the language to be parsed contains open tokens, such as arbitrary
numbers of other values, they must be implemented as cells. If
the open token defines a transition from a small to a large state, it
corresponds to a token cell in the implementation. On the other hand,
if it defines a transition from a large to a small state, it cannot be
implemented as an embedding library. Consider for example the
following two automata, where Int is the set of all Scala integer values.
The first yields a language that can be parsed using ZyTyG, the second
does not because it has an open transition between a large and a
small state—however, we will later see that extensions to ZyTyG may
actually allow it.

H a/Db p2 ANt
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The choice and repetition structures that can be used in an embed-
ding library correspond again to specific structures in an automaton.
Consider grammar Gg, which corresponds to the automaton below,
and demonstrates choice.

Gs = a(bc|d(e]f))

S

From state p;, which corresponds to a token cell, a deterministic choice
ismade based on reading token b or d. A choice is also made from state
p4, which corresponds to a method. In the case of a token cell state,
each outbound arrow is implemented as a method of a different name.
In the case of a method state, each outbound arrow is implemented as
one overloaded alternative for the same method. In other words, the
embedding library can provide choice from both kinds of states.

object a {
def b (next: c.type) = next
def d (next: e.type) = next
def d (next: f.type) = next

}

While not demonstrated in the example, it is also trivial to provide
choice on the first token.

Now consider grammar GI, which corresponds to the automaton
below, and demonstrates repetition.

GI := a{ba|bcde}
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This example contains two loops, one on two tokens (b a), the other
involving four (b ¢ d e). Until now, the implementation of the em-
bedding library imposed a constraint on the parseable language only
in terms of the location of open tokens. In the presence of repetitions
appear new constraints on the structure of the underlying automaton.
To implement the GI grammar, the following library can be used.

trait pl {
def b (next: c.type) = next
def b (next: a.type) = next
}
object a extends pl
object e extends pl
object c {
def d (next: e.type) = next

}

We notice that, for a single state p;, multiple token cells must be
defined (a and e). On the other hand, the implementations can
be shared through inheritance from p1l because the method tokens
available from that state are shared between the cells. This is because
in an embedding library, token cells serve two purposes: to define
a token in the grammar and to hold the set of following tokens. In
the example, the set of following tokens is shared, but the tokens
themselves are distinct.

However, only repetitions on sequences of even length are allowed.
It is easy to see that a repetition on a single token cannot be implemen-
ted because that token would have to be simultaneously implemented
as a token cell and as a method. Of course, this doesn't prevent a
repetition on the same token twice, as in “{ a a }”, but that is not
identical to a single token repetition. In terms of finite-state automata,
this property can be described by saying that transitions may only go
from a big state to a small one. In particular, this prevents transitions
to the same state, which are how single token repetition would be
represented. Furthermore, the very first token of the grammar, which
marks the beginning of the domain-specific expression, cannot be part
of any repetition.

Modulo-constrained grammars To formalise the constraints im-
posed by embedding libraries, I will introduce a new class of gram-
mars called “modulo-constrained grammars”. A modulo-constrained
grammar defines a language that can be accepted by an embedding
library as defined above, or by a deterministic finite state automaton
with big and small states. In a modulo-constrained grammar, each
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token is annotated with one of a ¢ or m marker. The ¢ marker indicates
that reading this token leads to a big state, that is, it is implemented
as a cell. Conversely, an m token leads to a small state and that it
is implemented as a method. For example, grammar GI would be
written as follows.
GI = a.{bmac|bmccdne}

For a grammar to be modulo-constrained, all accepted phrases must
yield a sequence of tokens such that only c-marked tokens are at odd
positions and only m-marked tokens at even positions. Furthermore,
all final tokens must be c-marked. To maintain this property between
production rules, non-terminal symbols are also marked. The follow-
ing is a rewrite of grammar GI using intermediate non-terminals.

GI¢ = a.{HI"}
HI = JI™|KI"
JITV = by ac
KIT* = by c.dpy e

All non terminals are annotated with two markers. The marker in the
superscript defines the state that is reached after reading one token
into the non terminal. The marker in the subscript expresses the state
that is reached at then end of reading the non terminal. Note that it is
alsojustifiable to speak of superscript and subscript markers in tokens.
But because they are always the same, the superscript marker can be
omitted for tokens.

For reasons of simplicity, we will consider the modulo constraining
properties assuming an EBNF grammar such that:

e all repetitions contain a single, non-terminal symbol;
e all branches of all choices contain a single, non-terminal symbol.

However, the properties are straightforward to generalise for other
grammars. For a grammar to be modulo-constrained requires the
following six properties to hold true.

1. The superscript marker of all non terminals must be the same as
the superscript marker of all symbols in its first set.

2. The subscript marker of all non terminals must be the same as
the subscript marker of all symbols in its final set.

3. If G is the start symbol of the grammar, it must be annotated as
G¢.

4. If H is anon terminal, and there exists a repetition in which it is
used (such as in “{ H }”) it must be annotated with H".
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5. If J and K are two non terminals, and there exists a choice in
which both are used (such as in “J | K”) they must both have
the same superscript markers and the same subscript markers.

6. All open tokens must be marked with c.

For a language to be parsed by an embedding library requires two
properties.

1. A regular, modulo-constrained grammar that generates the lan-
guage must exist. This property is fundamental to the embed-
ding strategy.

2. All closed tokens must be identifiers that are available in the
host language and, for all open tokens, there must exist a type in
the host language that contains all values accepted by the token.
How restrictive these properties are is very dependent on the
host language.

In practice, of the two restrictions on tokens, it is the availability of
identifiers that is the most limiting.

Context free grammars We will discuss in the next section whether
the limitations laid out above still allow parsing meaningful domain-
specific languages. However, before we do that, there remains one
issue. Because the formalism is first described in terms of finite-
state automata, it only insures that modulo-constrained grammars are
reqular. In reality, ZyTyG can at least parse context-free grammars
by using the state stored in cells to encode the stack of a pushdown
automaton. In other words, there are no additional constraints on the
EBNF form of modulo-constrained grammars than those described
above. In practice, however, it is cumbersome to manually manage
the state needed to parse context-free grammars. By following the
example of what is done in traditional parsers, we can come up with
a better solution to parsing embedded domain-specific languages.
Clearly, it is not necessary that the language be entirely defined
in terms of a ZyTyG parser. Most language parsers in compilers are
implemented as a two phase process starting with a fast scanning
phase and followed by a more capable parsing phase on the result
of the scanning. The scanning phase usually transforms streams of
characters into tokens and values using a regular grammar. The
parsing phase is described in terms of a deterministic context free
grammar, which is typically implemented using a LL- or LR-based
parser. A similar approach can be used for embedding libraries. By
treating the embedding library as a scanner, which aim is only to
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generate a stream of token, it is possible to use a friendlier parser
afterwards, such as Scala’s parser combinator library.

In this approach, the state field of token cells in the embedding
library store a sequence of tokens. At each step, two tokens are added
to the state: the method token and the token of the cell that was just
entered.

GI = a.{bmac|bmccdmne}

For example, an embedding library scanner for grammar G above
may be implemented as follows, here using Scala symbols as tokens.
If the scanned language contains open tokens, a richer data structure
for tokens would have to be used.

trait Tokens {
def tokens: List[Symbol]
}
class Scanner(token: Symbol) extends Tokens {
var tokens: List[Symbol] = List(token)
def stepInFrom(pToks: List[Symbol],
mTok: Symbol): this.type = {
tokens = token :: mTok :: pToks
this

}

trait pl extends Tokens {
def b (next: a.type) = next.stepInFrom(tokens, 'b)
def b (next: c.type) = next.stepInFrom(tokens, 'b)
}
object a extends Scanner(’a) with pl
object e extends Scanner(’e) with pl
object c extends Scanner(’c) {
def d (next: e.type) = next.stepInFrom(tokens, ’d)
}

Trait Tokens and class Scanner are generic implementations that can
be reused. The actual embedding library is almost identical to the
prototypical implementation. Only minor adjustments are required
to store tokens.

The complete token string for the domain-specific expression will
be available in the implicit conversion that transforms the final token
cell into a host language value. By using an arbitrarily complex parser,
it is possible to parse higher-level properties on the domain-specific
grammar. However, in this model, all of the parsing only happens
when the host program is executed. This implies that the ability of
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the compiler to statically detect syntax errors is limited to those that
pertain to the scanner.

In parenthesis A particular problem encountered when embedding
domain-specific libraries is that of parentheses. Because of the limita-
tions of the parser, it is not possible to directly parse them. However,
the meaning of parenthesis hardly ever changes: their role as a marker
of priority or relation is quite universal. Because of that, it is likely that
the semantics of parentheses in the host language can be reused for the
same purpose in the embedded language.

For example, assume we want to parse the language defined by
grammar G'J, which contains an expression in parentheses. This can
be done by nesting a sub-language inside a host language parenthes-
ised expression, which is then parsed by its own parser. The trick
works if the whole parenthesised expression is located at a c-marked
position in the modulo-constrained grammar.

GJ = ab’(cde’) fg

object a {

def b (next: x.type) = next
}
object c {

def d (next: e.type): x.type = x
}
object e
object x {

def f (next: g.type) = next
}
object g

Upon completion of the nested expression parser, its result is forced
to a nested expression cell x. This cell represents the whole par-
enthesised expression in the outer grammar. This implementation
allows obtaining better type checking characteristics, for example by
correctly rejecting the sentence “a b e f g”. However, it requires that
the end of the nested expression can be detected by the host type
system. In alanguage where the final cell of the nested expression also
is a non-final one, an implicit conversion from the nested expression
to the nested expression cell must be used. This is for example the
case if the nested expression concludes in a repetition.

Another available trick to use host language parenthesis is by
calculating a token cell not by a value identifier in the embedding
library, but by a method call. This allows to use at a c-marked position
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a closed token further followed by a parenthesised expression. An
example of such a grammar is GK, implemented below.

GK = a’("bcd’) ef

def a (sub: d.type): x.type = x
object b {
def c (next: d.type): d.type = next
}
object d
object x {
def e (next: f.type) = next
}
object f

Finally, both tricks used to support parenthesised expression rely
on the parenthesised form of method argument lists. If the host
language supports multiple arguments, it becomes quite easy to
parse multiple, comma-separated subexpressions in the parenthesis.
Furthermore, in Scala, method argument lists may also be enclosed in
braces. This allows the same tricks as described above for expressions
nested in braces. However, the parser cannot differentiate between
expressions nested in braces or parenthesis.

2.4 The soL for Scala language

It remains to be seen whether modulo-constrained grammars allow
to encode useful languages. To do so, we will consider a class of
languages often found in domain-specific programming.
Pseudo-human languages define the structure of their sentences
not by operators and recursively nested subexpressions, but by using
relatively fixed word sequences. While less flexible than traditional
programming languages, they are quite popular for domain-specific
programming because they are considered more user friendly. I
will show in this section that the methods described in the three
previous sections are powerful enough to encode sqQL, a complex
example of pseudo-human languages, almost exactly according to its
specification. The embedding library described in this chapter has
been implemented by Cédric Lavanchy under my supervision [58].
ScalaDBC is a wrapper around the JDBC database library and
part of the Scala standard library. Unlike JDBC, ScalaDBC repres-
ents queries as native data structures—as opposed to strings. SoL’s
syntactic elements are represented by classes whose members are the
sub-elements, effectively building a syntax tree for queries. However,
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writing this directly is verbose and unintuitive. For example, the
query “SELECT = FROM persons” would be written as follows:

statement.Select {

val setQuantifier = None

val selectlList = Nil

val fromClause = List(statement.Relation {
val tableName = "persons"
val tableRename = None

1)

val whereClause = None

val groupByClause = None

val havingClause = None

}

Instead, a ZyTyG library allows writing queries with sqL syntax. The
previous query is then written as “select * from ’persons”. In fact,
the domain-specific language supports all of soL’s query and database
modification language with only very minor modifications required to
the syntax to make it modulo-constrained. This allows writing queries
such as the following.

select (’'age, 'name, ’'salary)

from (’'persons naturalloin 'employees)

where (
"gender == "M" and
('city == "lausanne" or ’'city == "geneva"))

orderBy 'age

The few differences imposed by ZyTyG on the grammar have
to do with reserved keywords in the host language. For example,
selecting a field of a table in soL is done using the dot as operator,
as in “persons.name”. Scala does not allow to overload the meaning
of the dot; ScalaDBC therefore requires to use another operator and
write “persons*xname”. Another example is that reference to arbitrary
tables or fields are not tokens in the domain-specific language, but
instead Scala values of type Symbol.

The sqL ZyTyG library is implemented using a variation of the
scanner plus parser approach described in the previous section. The
scanner is defined in two separate parts. One part of about 150 lines
of code provides all entry points to soL—starting tokens and implicit
conversions. The other, of about 350 lines, contain the remainder of
the scanner. Unlike the design described earlier in this chapter, the soL
scanner does not create one class for every object token. Instead, it has
a single ExpressionBeyond class that represents all object states and
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contains all methods. This simplifies the design of the scanner and,
by reducing object instantiation, improves its performance. However,
it reduces the quality of static errors related to the domain-specific
language. The parser utilises the token stream generated by the
scanner and implements the full 1so sqL specification. It uses Scala’s
parser combinator library and is composed of about 140 non-terminals
in 750 lines of code. The implementation is remarkably compact If one
considers that it encodes a sizeable fraction of the second part of the
150 sQL specification [44], a document of over 1200 pages.

2.5 A silver bullet?

Throughout this chapter, we have seen how the syntax of a domain-
specific language can be embedded using only libraries. The tech-
nique is not trivial, and suffers from certain restrictions. However,
to assess its merits, one must compare it to traditional embedding
techniques.

e Traditional techniques have the advantage of unlimited flexib-
ility in the design of the embedded language. There are no re-
strictions to the language family like those imposed by modulo-
constrained grammars. Furthermore, because the embedding
happens statically, it does not cause any runtime overhead—
the quality of the transformation to host language expressions
remains a concern, however.

On the other hand, the use of preprocessors, dedicated macro
systems or custom compilers renders the programming environ-
ment more complex. Moreover, soundness properties are rarely
defined on the domain-specific code. This is because domain-
specific soundness depends upon the remainder of the program,
which macro systems or preprocessors have very little access to.

e ZyTyg simplifies the programming environment: existing IDEs,
debuggers and processes work for domain-specific code; there
is no need for additional tools in the compilation chain.

But the key advantage of using libraries to embed syntax is the
level of integration allowed between domain-specific code and
the host program. Domain specific code can easily and safely
access values from the host program. In fact, general purpose
expressions can be inserted into the domain-specific expressions
to calculate values. A small restriction to mixing domain-
specific code is that Scala cannot generate multiple implicit con-
versions that are required to convert data from one domain to

57



another. This requires explicitly defining conversions between
these domains. Despite this caveat, implicit conversions give
a flexibility in terms of handling domain-specific interpretation
that is extremely costly to replicate in traditional methods.

Because domain-specific expressions are also host-language val-
ues, such expressions can easily be constructed programmatic-
ally. For example, different fragments of domain-specific code
stored as values can be joined into a useful expression by the
host program depending on its state at that point. This ability is
in effect a sort of code generation ability that improves reuse. An
approach like ZyTyG also allows for a more gradual extension
of the embedding. The embedding language may for example
first be used only for a subset of the domain-specific problems,
the remainder defined as domain-specific data structure using
the host language’s syntax.

A superior embedding strategy for domain-specific languages would
merge the benefits of ZyTyG and traditional solutions, while shedding
their flaws. As was discussed in modern takes on traditional
techniques explore macro systems tightly linked to the compiler,
which better integrate domain-specific fragments with the remainder
of the program. However, these systems are inherently complex
because they solve the problem by adding new abstractions or tools.
ZyTyG starts from the principle that it is preferable to solve a problem
without an additional layer of tooling. Furthermore, the flexibility
afforded by library-based embedding in terms of integration and
reuse seems very difficult to provide using traditional techniques.

Can one start from a library-based embedding technique and make
its syntax more flexible, give it better correctness properties, and
make it faster? Incremental improvements to ZyTyG are certainly
imaginable. For example, Rompf experimented with an extension
that models the stack of a pushdown automaton, thereby providing
additional static verification for the domain-specific syntax [74].

The next chapter moves away from ZyTyG to discuss a different
embedding strategy, which may end up answering some of ZyTyG'’s
restrictions in terms of correctness. However, we will also conclude
that, fundamentally, domain-specific embeddings require access to
static data that isn't available during runtime of statically-typed lan-
guages. On the other hand, domain-specific embedding techniques
that rely on the compiler or a static macro system solve only one side
of the problem, missing the dynamic nature that gives library-based
solutions an edge in terms of integration. To tackle all facets of the
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problem will requires linking dynamic and static characteristics of the
program in a way that isn’t afforded by usual language abstractions.
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Chapter 3

Types That Traverse Domain
Boundaries

We have seen in the previous chapter how to use the host language’s
syntax and semantics to encode a domain-specific language. Notably,
however, this technique hijacks the type system which is no longer
available for its original purpose. It becomes all but useless for
checking soundness properties of domain-specific expressions, and
their interaction with the host program. Even a dynamically-typed
version of ZyTyG would require information about the environment
that is only accessible through metaprogramming, as we will see in
the second part of this thesis. Instead of pursuing this route, this
chapter steps back from syntax to consider using domain-specific
types for domain-specific programming. This is an easy problem if
the host language’s types can represent the domain directly. Object
oriented types are well suited in that regard. But certain domains
are inherently incompatible with that model, even with enriched
object types like those of Scala. Domain-specific languages that access
somewhat unstructured data are oftentimes a poor fit.

Take for example a domain-specific language for accessing data
in a relational algebra [18], like soL. Common implementations,
such as jpBc, are poorly embedded and provide no guarantees on
types at all. Object-relational mapping systems deliver a degree of
safety by fitting the types of the relational algebra to those of objects.
However, because object types are more restricted, an object-oriented
view is forced upon the relational data. As an example, Hibernate [47]
represents a relation as a class, and its rows as objects. But a relational
algebra, using one of its “join” operators, allows to create a new
relation by merging two. Because classes cannot be joined in the
same manner, object-relational mappings do not support this part of
the algebra, forcing a certain view upon the data to the detriment of
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any other. This example demonstrates how subtle domain-specific
properties—here the ability to arbitrarily choose associations between
relations—are lost when mapping a domain-specific type system to
that of the host language.

In order not to suffer from such restrictions requires the host
language’s type system to offer types powerful enough to encode
domain-specific properties. The usual approach is to provide stronger
control on types through additional kinds and operators. Instead, I
postulate that many domains in fact require types that are weaker,
implying less control. A sloppier type system may provide the added
flexibility needed for embedding domain-specific expressions. In this
chapter, we will discuss structural types as an alternative in domain-
specific programs to traditional nominal types. As an embedding
technique, it obviously concentrates on domain-specific correctness
properties—specifically soundness—, which also implies a relation to
the shape of data.

syntax

correctness data

semantics

3.1 Structural types in a nominally-typed language

Traditional object-oriented type systems require to explicitly name the
type of every object by giving it a class. Similarly, subtyping relations
between types are made explicit by using the extends keyword when
declaring a class. Because they name all “is a” relations explicitly, such
type systems are called "nominal". Conversely, structural types, also
known as “duck typing”, allow a type to be subtype of another if their
structures — that is, their members — allow it. At the simplest, a type
is allowed to be a subtype of another if it exposes at least the same
members.

Structural and nominal types are not mutually exclusive. Amongst
other, the calculus vObj [68], which was presented in 2003, includes
both nominal and structural subtyping in a unified way. Malayeri and
Aldrich later proved that the unification of nominal and structural
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types is sound using their Unity calculus [64]. Scala concretises
Odersky’s ideas presented in vObj, although early versions of the
language lacked full structural types; only refinement types were
available. There, the structural aspects taken into account by types
is limited to the argument and result types of existing members of
a class. However, as of version 2.7 of Scala, full structural types are
available.

To illustrate Scala’s structural types, let us consider an example.
Some objects have a close method that must be called after use.
Without structural types, writing a generally applicable autoclose
method would require all closable objects to implement an interface
containing the close method. Structural types solve the problem
differently.

type Close = Any { def close: Unit }

def autoclose(t: Close)(run: Close => Unit): Unit = {
try { run(t) }
finally { t.close }

To be compatible with the “Close” structural type, an object must
be compatible with Any—all objects in Scala are—and it must imple-
ment the close method. It is the structure of their members—name,
type of the arguments and of the result—that define whether an object
is of a given type. The autoclose method is implemented using the
Close type. Its arguments are: first, the object to be automatically
closed, such as a socket or file, and second, some code that uses the
object and must be run before the object can be closed.

autoclose(new FileInputStream("test.txt"))( file =>
var byte: Int = file.read
while(byte > -1) {
print(byte.toChar)
byte = file.read

The closable object that is passed to autoclose is an instance
of FileInputStream. It conforms to the structural type because it
contains a close method. FileInputStream, which is part of Java's
standard library, does not implement any particular interface related
to type Close. The second parameter for autoclose is a block of code
that will read the stream. After executing it, autoclose will close
the file. The method call t.close must be executed from the body
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of autoclose. At that location of the program, the fact that close is
defined in the object t is known because of the structural type.

3.2 A reflective implementation of structural types

Structural types are are a general-purpose construct. This section dis-
cusses their implementation, the next one considers its performance.
Structural types are abstractions that go beyond what can directly
be mapped onto the Java virtual machine. This and the previous
chapter hinted towards the fact that abstractions for domain-specific
programming may often display a similarly flexible nature. In that
sense, a discussion on the implementation of structural types is likely
representative of the sort of challenges that arise when implementing
other abstractions for domain-specific programming.

A Scala method call is normally directly compiled to an equivalent
JVM method call instruction. This instruction requires that the JVM
knows beforehand that the receiver of the call can respond to it—
for reasons of performance. Because structural types are not part of
the JVM, it does not know that t can respond to close. This shows
that calls to methods which are statically defined as members of a
structural type (structural method calls) cannot simply be compiled
to a JVM method call. Instead, they require a different compilation
technique that bypasses the constraints of the JVM. Two families of
compilation techniques can be used to this end: hybrid generative-
reflective techniques and pure reflective techniques.

Hybrid generative techniques create Java interfaces to stand in for
structural types on the JVM. The complexity of such techniques lies in
that all classes that are to be used as structural types anywhere in the
program must implement the right interfaces. When this is done at
compile time, it prevents separate compilation. When that is done at
runtime, it requires to adapt dynamically objects to interfaces, which
is expensive and complex.

Gil and Maman’s Whiteoak [38] is an extension to Java with struc-
tural types that are compiled using a generative technique. Whiteoak
does not modify classes to implement interfaces at compile time;
instead, it uses ASM, a bytecode generation framework, to create
wrapper classes at runtime. These wrappers implement the inter-
faces corresponding to structural types and forward all method calls.
Whenever a structurally defined method is to be called on an object, a
wrapper for the structural type is generated and the method is called
on the wrapper instead of the object. The wrapper then delegates the
call to the original object. A different wrapper class is needed for
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every structural type—because its interface changes—and for every
type of delegation object—because the code of the forwarder methods
is tailored for one specific delegation. Whiteoak uses a global cache
strategy to reduce the number of wrappers that must be generated.

Pure reflective techniques replace JVM method call instructions
with Java reflective calls. Reflective calls do not require a priori
knowledge of the type of the receiver: they can be used to bypass the
restrictions of JVM method calls. The complexity of such techniques
lies in that reflective calls are much slower than regular interface
calls. Optimisations are required for this technique to be competitive.
The first part of analyses the performance of Scala’s compilation
technique of structural types. Its second part compares the perform-
ances of Scala’s reflective compilation technique to that of Whiteoak’s
generative technique.

Compiling structural types The compilation technique of structural
types in Scala that is discussed below is based on a reflective tech-
nique. To overcome the cost of reflection on the virtual machine, it
uses varied caching strategies. The overall structure of the technique
is threefold:

1. The type system checks that structural types’ declarations are
valid, and that their uses conform to the type discipline of the
program.

2. When Scala types are “erased” to Java virtual machine types,
structural types disappear. All structural method calls are no
longer valid in the erased type discipline. They are replaced by
a special “apply dynamic” method call.

3. Every “apply dynamic” call is compiled to Java reflection so as
to behave as a proper call on a structural value. The necessary
caching infrastructure is added.

Type Checking In Scala, it is straightforward to support type check-
ing of structural types: structural types are a generalisation of re-
finement types, which have been part of the language from the start.
Like structural types, refinement types allow to add constraints on the
members of an existing type. However, they require the constraints to
be on the type of a member that is inherited: no new members may
be defined structurally. To support structural types, the Scala type
checker merely had to see a single test removed.
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Erasure In order to understand why structural types have to be
“erased”, and why some method calls become invalid afterwards, it
is necessary to discuss the role of erasure in the Scala compiler. Java
bytecode is annotated with Java types: the virtual machine will check
these types and will reject the program if they are not valid. A Scala
program compiled to bytecode must be annotated with Java types
that are valid and will not be rejected by the virtual machine. Erased
types are Java types that define a fype discipline on the program that
is equivalent to, although less precise than that of the program typed
with Scala types. If erasure maintains this equivalence, bytecode
instructions—most importantly method calls—can be directly used to
compile Scala programs: a method call which is valid in Scala is also
valid in bytecode. Erasure is described in detail in §3.6 of the Scala
specification [66].

Before structural types were introduced, all of Scala’s type con-
structs could be erased in some way. To simplify, a mixin type
such as “A with B” is erased to A—all objects of this type must then
inherit A and implement B so that they can be cast to B when neces-
sary. However, there is no Java type to which a structural types can
be erased. The simple structural type “Object { def f: Int }”, if
erased to Object, will see the JVM reject a call to f because Object has
no such method. A solution is to generate for every structural type in
the program an interface that represents it and have all of the objects
of this structural type implement the interface. The interface for the
type above may be as follows:

interface FStruct {
int f();
}

That is, in a simplified form, the “generative” technique used by
Whiteoak. Scala’s “reflective” technique does not require an erasure
model that maintains the type equivalence property. Instead, the
compiler will have to generate instructions that allow calling methods
on objects having an erased type that does not contain the definition
of the method.

“Apply dynamic” calls Method calls are represented in Scala’s ab-
stract syntax tree as Apply nodes. Normally, these nodes are compiled
to JVM method call instructions; that is possible because of erasure,
as we explained in the previous paragraph. During erasure, when
the compiler encounters in the abstract syntax tree an Apply node
that cannot be compiled to a JVM method call because the receiver
has a structural type, it will replace the Apply with an ApplyDynamic.
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The observed semantics of ApplyDynamic are that of Apply, but it is
compiled so that the receiver of the call can have an erased type that
does not define the method, as will be explained below.

As a reminder, the dispatching semantics of method calls in Scala,
like in most popular object-oriented languages, is dynamic on the
receiver’s type but static on the parameters’ types. Consider for
example the method call “a.f{x}”. The actual instances used at run
time for a and x may have types that are compatible with, but different
from the types statically assigned to a and x. The implementation of
f that should be used is that defined in the class corresponding to a’s
dynamic type. If, for a given call site, the type of the receiver instance
changes, the implementation of the method must be modified. On the
other hand, if f is overloaded, the alternative that should be used is
statically defined, based on the static types of f’s parameters.

It may be noted that we present ApplyDynamic as a means to
compile structural types. However, we believe that it is a more general
solution that can be used for other types that bypass the JVM’s type
system.

Compilation of “Apply Dynamic” Calls

The technique that we present to compile ApplyDynamic nodes to JVM
bytecode is based on Java reflection. At first sight, this transformation
is trivial. Since reflective method lookup and application are purely
dynamic, the JVM’s type system won't be in the way. A method call of
the form “a.f (b, c)”—where a is of a structural type, while b and ¢
are of type B and C respectively—can be replaced by the compiler with
the following expression.

a.getClass
.getMethod("f", Array(classOf[B], classOf[C]))
.invoke(a, Array(b, c)

In this implementation, the semantics of dispatching is preserved,
mostly thanks to the fact that Java reflection supports it directly. The
getMethod call is sent to a’s dynamic class, routing the lookup to the
right place. The static types of the parameters, obtained with class0f
operators, are sent to getMethod in order to select from overloaded
alternatives.

Caches This naive compilation technique cannot be considered be-
cause its performance is not acceptable in practice; a purely reflective
method call is about 7 times slower than a regular call (on JVM 1.6).
However, about 4/5 of the compiled expression’s complexity lies in the
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sole getMethod operation. If the method is somehow already available
and only invoke and getClass are used, the reflective implementation
is “optimal” and a method call may be only two times slower than a
regular call.

Caching brings the performance of structural method calls closer
to the optimal performance, when compared to the naive implementa-
tion. Of course, it never allows for an optimal performance since there
will always be cache misses—at least once for the first call. We will
discuss compilation techniques using two different caching strategies,
which approach the optimal situation quite closely in realistic cases.
In this discussion, and in where the performance of caching is
assessed, we will use the following caching techniques.

0c No caching. This is a slight variant of the naive, purely reflective,
compilation techniques above, with the array of static parameter
types precalculated.

1c Monomorphic inline caching is a technique where only a single
method is cached for every call site.

Nc Polymorphic inline caching is a technique that caches a method
for every receiver type at the call site.

Monomorphic caching A call site is monomorphic if the type of
the method call’s receiver stays the same throughout the execution
of the program. Many call sites are monomorphic in practice. Mono-
morphic inline caching takes advantage of this property and caches
one method implementation per call site. If the call site is in fact
monomorphic, the same implementation can be reused every time at
practically no cost. If the site is not monomorphic, the cached imple-
mentation will be discarded every time the receiver type changes, and
a new implementation will be obtained using getMethod.

For every dynamic call site of a class, the 1c implementation adds a
static method called dynMethod—plus an identifier to make that name
unique. dynMethod takes the class of the receiver and returns a method
implementation that corresponds to the call site and to the receiver. A
call site of the form “a.f(b, c)” is replaced by the compiler with the
following expression.

dynMethod(a.getClass).invoke(a, Array(b, c))

We wish to generate a dynMethod that can, for monomorphic call
sites, return immediately. Here is how dynMethod is implemented for
the above call site.
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[static]
def dynMethod(forReceiver: JClass[_]1): JMethod = {
if (dynMethod$Class !'= forReceiver) {
dynMethod$Method =
forReceiver.getMethod("f",
Array(classOf[B], classOf[C])
)
dynMethod$Class = forReceiver
}
dynMethod$Method

The static variables dynMethod$Class and dynMethod$Method con-
tain, respectively, the class of the previous receiver and the looked-
up method for that class. Whenever the previous receiver class
differs from the current one, dynMethod$Class and dynMethod$Method
are recalculated, at considerable expense of time. If they are equal,
dynMethod$Method is returned, at the expense of a test and a variable
dereference. The latter case is almost equivalent to immediately
returning, and gives to the call site a performance close to the optimal.

Polymorphic caching A call site is polymorphic if the method call’s
receiver type changes over the lifetime of the program. Polymorph-
ism has many dimensions: its degree—bimorphic, trimorphic, etc.—
describes how many different receiver types can be observed at that
call site throughout the program’s execution; its intensity describes
how frequently the call’s receiver type changes. A call site may have a
high degree of polymorphism but may remain quasi-monomorphic
for most of the program’s execution, for example if polymorphism
at that point is linked to initialisation. It is, for obvious reasons, on
highly intensive polymorphic call sites that it is the hardest to obtain a
performance close to that of the optimal compilation. In what follows,
and in we discuss worst case polymorphic call sites; reality will
usually lie somewhere between the worst case and a monomorphic
site.

The technique that we use for polymorphic inline caching is based
on that proposed in [41], using JVM objects instead of low-level
memory blocks.

The technique generates a dynMethod method for every call site,
and the call site itself refers to that method. Instead of caching a single
pair made of the receiver’s type and the method’s implementation,
dynMethod caches a list thereof. When looking-up the implementation
of the method at a call site, and if the receiver type was never

69



encountered before, dynMethod will use getMethod, as in the naive
implementation. The receiver class and method implementation pair
will be appended to the front of the list. A method’s implementation
already in the list will be reverted from the list.

The list used to store method implementations is a simple linked
list. Searching it has a complexity of O(n) (n being the length of the
list), adding to it has a complexity of O(1). The latter task is a lot less
common than the former; using a linked list may not be optimal when
compared with a binary search tree, for example. We did not attempt
to evaluate the performance of a cache backed by a binary tree or using
a hashed dictionary. It must be noted that, contrary to most faster
data structures, some implementations of linked lists can be used as
caches in a multithreaded environment without synchronisation. In a
parallel environment, a conflict leads at worst to one implementation
obtained by getMethod being lost; it will have to be recalculated the
next time it is used.

Exception handling When an exception is thrown in a reflectively
called method, invoke wraps it in an InvocationTargetException.
That changes the semantics of method calls. The problem is trivi-
ally circumvented by catching the exception from the ApplyDynamic
call site, and then rethrowing the original exception, which can be
obtained from the InvocationTargetException.

Boxing of native values Java reflection only works with objects, not
native values like int, float, or boolean. If a method requires a
argument of type int, for example, reflectively calling invoke on it will
require a boxed integer (instance of java.lang.Integer). Similarly, if
a method returns a boolean, for example, the result of the reflective
call will be a boxed boolean (instance of java.lang.Boolean). The
compilation of ApplyDynamic must take that into account.

The Scala language has a purely object-oriented unified type sys-
tem with no distinction between native values and objects. Any is a
type that is compatible with both native values and objects. A type
variable (with an implicit Any upper bound) can be instantiated to
either an object type or a native value type. Therefore, both Any and
type variables must be erased to a type that the JVM recognises as
compatible with all instances. Object is the closest approximation
of such a type. However, using Object requires all native values to
be boxed when they are referred to with a type that exceeds Java's
Object in generality. Early versions of Scala used a custom boxing
scheme that was incompatible with Java reflection. The compilation
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of ApplyDynamic required constant unboxing of Scala boxed values and
reboxing to Java ones, and vice-versa. The performance lost because
of that was very noticeable. Changing Scala to use the same boxing
technique as Java solved that problem.

Native bytecode operations Another difficulty caused by Scala’s
unification of types is that operations like integer addition (+) on
native values, for which the JVM uses bytecode instructions, are
represented in Scala as methods. The normal compilation has the
bytecode generator recognise these “fake” method calls, and rewrite
them to the corresponding instructions. Let us consider a program
where a native value is referred to as a structural type, as in the
example below.

def g(x: Any{ def + (i: Int): Int }) = x + 2

From Scala’s perspective, x + 2 is considered as x.+(2). Since +is
a structurally defined method, it must be compiled as ApplyDynamic.
The getMethod call will lookup a + method on x’s class and will fail—x
is boxed to a java.lang.Integer, which does not have a + method.

Instead, the ApplyDynamic transformation detects any fake method
—using a list of such methods—and generates a call to a static utility
method that implements the fake method’s behaviour. Of course, a
fake method like + may actually be dispatched to an instance that
does, in fact, implement it. Therefore, the call to the utility method for
the addition must be guarded by a dynamic type check: if the call’s
receiver is of type java.lang.Integer, the utility method should be
used; if not, the call must be dispatched like a normal ApplyDynamic.

Type parameters To call a method, invoke must know the static
types of the method’s parameters, which are passed as an array of
classes. These types are used to maintain correct dispatch semantics
and to select the right method if its name is overloaded. When invoke
is used to implement an ApplyDynamic, the compiler must know the
signature of the structurally defined method that is being called. In
general that is easy, as in the example below.

def g(x: { def f(a: Int, b: List[Int]): Int }) =
x.f(4, List(1,2,3))

The declaration of the structural type of x contains the static types
of both parameters of f. These types can be used to generated the
reflective call to invoke.
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There is no problem either if the parameter types of the structur-
ally defined method are type variables, as long as the variables are
declared as part of the method definition.

def g(x: { def f[Tl(a: T): Int }) =
x.f[Int](4)

When g is called, its argument p will be an object that contains
a method with the signature “x[T](t: T)”. Erasure changes type
variables to their erased upper bound, which is Object in T’s case.
Erasure will make sure that f’s parameter is boxed when it is a native
value. This is the expected behaviour in such a situation: invoke is
called with Object as the static type for the a parameter.

A problem arises if the parameter types of the structurally defined
method are type variables that are declared outside of the scope of the
structural type.

def g[T](x: { def f(a: T): Boolean }, t: T) =
x.f(x.t)

g[Int]l(new { def f(a: Int) = true }, 4)

glAny]l (new { def f(a: Any) = true }, 4)

The type variable T is instantiated to a concrete type every time
g is called. The static type of f’s parameters therefore changes for
every call to g. On the other hand, the transformation of ApplyDynamic
for x.f is done only once, in the body of g, no matter what type T
will eventually be assigned to. The values of type variables are not
available at runtime so that ApplyDynamic cannot be compiled in a
way that reconstructs the static types of the method’s parameters at
runtime.

A similar issue arises if the parameter types of the structurally
defined method are type variables that are declared as type members
of the structural type.

def g(x: { type T ; def t: T ; def f(a: T): Boolean }) =
x.f(x.t)

g(new { type T = Int; def t = 4; def f(a:T) = true })

g(new { type T = Any; def t = 4; def f(a:T) = true })

As before, the ApplyDynamic for x.f cannot be compiled because
it depends on the static type of T. In this situation, T changes every
time the parameter x of g implements the structural type using another
value for type T.

To overcome these problems requires runtime types that complete
the missing static type information. Manifests, which are optional
runtime types and will be presented in Chapter [6] could be used so
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that the values of type parameters are available to the implementation
of ApplyDynamic. However, this remains future work; for the time
being, Scala rejects problematic type variables for structurally defined
method’s parameters.

3.3 On performance

All the tests of this section have been run using a Java HotSpot
1.6.0_07 64-bit Server VM on an iMac computer (2.33 GHz Core 2
Duo with 4MB L2, 2GB Memory) running Mac OS X 10.5.6. All times
are averages over multiple executions, and their variances have been
checked to be insignificant—typically in the order of 1/100 of the
average. For tests involving pseudo-random values, values change

between executions.

Dynamic and virtual method calls

Only a fraction of method calls will be structural in real-life scenarios.
The first performance benchmark that we discuss is a functional
implementation of merge sort, which uses structural types. Such code
is representative of the performance of code that heavily depends on
structural types.

Functional merge sort To implement a functional merge sort al-
gorithm for a list, a comparison operator between elements of the list
is needed. On solution is for all objects that are to be merge sorted to
implement the Comparable trait in Scala’s library. But if merge sorting
is to happen on objects that are not ready for it—that is, have not
implemented Comparable—structural types can be used instead. This
is the signature of the mergeSort method when using an interface:

type ComparablelList =
List[Comparable[Any]]
def mergeSort(elems: ComparablelList): ComparablelList

When using structural types, the signature of the method remains
identical; only the type is declared differently:

type ComparablelList =
List[{ def compareTo(that: Any): Int }]

The implementations of both methods are identical. It requires
O(nlogn) merges on average. Each merge is composed of three
calls for dereferencing list heads or tails, one comparison (a call
on a structurally defined method), and one concatenation (which
instantiates an object).
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Figure charts the time required to order 2000 times a list of
1000 pseudo-random elements. For monomorphic measurements, the
list contains only instances of a single class. That means that the
structurally-defined comparison method can always be called on the
same implementation. For bimorphic measurements, the list contains
instance of two classes at even, respectively odd positions. That
forces the implementation of the method to be changed whenever
the receiver object of the comparison method changes. For both
monomorphic and bimorphic lists, the performance of different cach-
ing techniques is measured. S is the reference situation where a
Comparable interface is used instead of structural types, and where
regular interface calls are used instead of ApplyDynamic calls.
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Figure 3.1: Execution time of the merge sort algorithm. Oc is the
uncached implementation, 1c uses a monomorphic cache and Nc a
polymorphic one. S uses interfaces instead of structural types.

As expected, there is a performance penalty for using structural
types when compared to using a Comparable interface; in this case
the time is around 25% more for Nc caching. If we assume that un-
cached structural method calls are about 10 times slower than regular
interface calls, our data indicates that calling the comparison method
represents about 1/8 of the test’s execution time in the reference case.

In the monomorphic case, Nc and 1c exhibit similar performances,
while Oc’s performance is, predictably, more than twice as slow as
regular interface calls. In the bimorphic case, the advantage of Nc
becomes evident. That is not surprising as, in the test procedure, 1c
must revert to a full method lookup equivalent to Oc for half of the
calls. Indeed, the receiver of the call is randomly chosen between the
two same classes for each call, which therefore has a 50% chance of
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being different from the previous one. The relative speed of Nc and
1c may vary under different scenarios, but no bimorphic scenario is
more favourable to 1c than the monomorphic case. On the other hand,
I cannot explain the difference in performance between the mono—and
polymorphic cases for Oc.

Single method call The test repeatedly calls a structurally defined
method in a tight loop. The degree of polymorphism at the call site
varies from one to four—from mono (morphic) to quadri (morphic).
Figure 3.2)charts the time required to call a method 10 million times.
Bi- and quadrimorphic cases are worst-cases, where the class imple-
mented by the receiver changes for every method call. To obtain
polymorphism at the call site, the call’s receiver is looked-up in
an array, changing the index into the array, modulo the degree of
polymorphism, for every iteration of the loop. Profiling this operation
did not reveal the relative cost of this operation.
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Figure 3.2: Execution time in relation to polymorphism degree of call
site.

As was previously mentioned, the uncached implementation (Oc)
of ApplyDynamic, when compared with a regular interface call (S), is
7 times slower. When polymorphic inline caching is used (Nc), the
slowdown is reduced to between 2.0 and 2.3 times, depending on
the degree of polymorphism. The situation for monomorphic inline
caching (1c) is equally favourable for a monomorphic call site, but the
performance is as bad as Oc for polymorphic sites. The performances
of the three caching strategies for different degrees of polymorphism
are perfectly coherent with their implementations. If we assume that
the time of a method call in Nc is entirely composed of the execution
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of the invoke method, comparing Nc and Oc shows that the time of
a full reflective method call is distributed between 30% in the invoke
call and 70% in the getMethod call.

Figure represents the same data as figure but the JVM
is run in such a way that it does not use just-in-time compilation,
only interpreting the bytecode. While this data is not representative
of real performance, it may be considered as an upper bound for
the slowdown caused by structural types, and shows how effective
JVM 1.6’s just-in-time compilation is at optimising them. In the
interpreted case, a regular method call is 7.6 times faster than for the
Nc implementation, while when just-in-time compilation is used, the
difference is of only 2.1 times.
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Figure 3.3: Execution time—with JVM just-in-time compilation
disabled (interpreted)—in relation to the polymorphism degree of call
site.

Megamorphic call sites Some call sites have a degree of polymorph-
ism much higher than that used in the previous test. Such sites
are rare—Holzle et al. [41] report that no call site in their real-
life benchmarks have a degree of polymorphism of more than 10—
but they can seriously harm the performance of polymorphic inline
caching. Figure 3.4 graphs the time (y-axis) required to call a method
10 million times with respect to the degree of polymorphism of the
call site (x-axis).

In Nc, the length of the cache n is eventually equal to the de-
gree of polymorphism of the call site. Searching the cache has a
complexity of O(n) so that the worst-case performance of Nc will
decrease linearly with the degree of polymorphism. On the other
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hand, the performance of Oc is expected not to change with the degree
of polymorphism. The results do show a slowdown for the latter
case, possibly because of variations in the effectiveness of just-in-time
compilation. However, this slowdown remains lower to that of Nc
so that the performance of the two implementations become equal
when the call sites have a degree of polymorphism equal to about
180. At that point, the performance of Oc and Nc are equivalent
because Scala’s implementation of Nc automatically reverts to Oc when
reaching that threshold.
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Figure 3.4: Execution time in relation to the degree of polymorphism
of the call site.

Interpretation The results reported above show that the Nc imple-
mentation, using polymorphic inline caching, is either significantly
superior or roughly equivalent to the other implementations in all
situations. Even for monomorphic call sites, the 1c implementation
that is designed with such call sites in mind is not significantly better
than Nc.

Scala and Whiteoak

Gil and Maman have compared [38] the performance of structural
method calls in Whiteoak with the performance of regular interface
calls. Their results show that in the best case—when the fast “primary
cache” can be used—their implementation allows for constant-time
structural method calls that are about as fast as interface calls. How-
ever, a start-up cost of about 200us is incurred before the first struc-
tural call is executed. They also report that the worst case scen-
ario is about 7 times slower than the best case. Sufficiently small
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performance-critical areas are covered by the primary cache and will
be close to the best-case performance. For most real-life applications,
however, that would rarely be the case.
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Figure 3.5: Execution time in relation to the number of monomorphic
calls at single call site. Broken lines are for cold call sites.

Figure [3.5/shows the results obtained in our own tests, comparing
the performance of Whiteoak’s best case with that of Scala’s Nc
implementation for a monomorphic call site. Results for polymorphic
call sites do not differ significantly. The observed times are linear in
the number of calls: they confirm the constant call times reported
by Gil and Maman. To understand better the initial start-up cost of
Whiteoak, the tests are run twice, without restarting the JVM, for
different call sites. The reported “cold” times are for the first structural
call site, and include the infrastructure’s initial start up overhead. The
“hot” times are for the second call site, and only include the overhead
incurred at a given call site, if any. A best-fitting linear regression
(y = ax + b) is calculated for every data set. The value at which
the regression line intercepts the y-axis (b) is an approximation of the
overhead; the slope of the line (a) is an approximation of the time for
a single structural call.

Overhead Call time

Cold Scala  36us 38ns
Scala 3-6us 38ns

Cold Whiteoak 180us 11ns
Whiteoak 2us 157s

A comparison of hot Scala with hot Whiteoak shows that both have
relatively low overheads when calling a site for the first time—equal
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to about 80,000-160,000 method calls for Scala, 130,000 for Whiteoak.
The call time for Scala is about 2.5 times slower than that of Whiteoak,
which is in line with the result reported above. The initial start-up
overhead of Scala’s implementation is one order of magnitude greater
than the overhead at a subsequent call site. This overhead’s origin is
likely to come from the infrastructure for polymorphic inline caching,
as this is the only code that is shared amongst call sites. The initial
start-up overhead for Whiteoak’s implementation is 5 times greater
than that of Scala, and can probably be explained in part by the time
necessary to initialise ASM, the bytecode manipulation framework
required by Whiteoak. Scala’s call times are 3.4 times slower than cold
Whiteoak’s call times, which is a result at odds with those comparing
Scala’s times with regular interface calls. A possible explanation
is that just-in-time compilation differs between this test and those
obtained on Scala alone.

Interpretation The results that are reported above show Whiteoak’s
implementation of structural types to be superior to Scala’s imple-
mentation. They indicate that Scala is in between 2.5 and 3.5 times
slower than Whiteoak when considering the performance in tight
loops, a situation where Whiteoak excels. Therefore, Whiteoak’s
implementation is preferable if structural method calls are to be used
in a hot spot of a performance-critical algorithms. On the other
hand, these results very much depend on Whiteoak using its small
primary cache. Since Whiteoak’s cache is shared amongst all call
sites—contrary to Scala’s caches which are specific to each call site—
the performance of Whiteoak’s implementation will diminish when
a program’s execution cost is not contained in a tight loop. Gil
and Maman report the performance of Whiteoak in a situation that
“mostly hits the secondary cache” to be 7 times smaller than the
best-case performance. Because of that, in such a situation, Scala’s
technique using reflection and polymorphic inline caching will likely
be faster.

There is a performance penalty associated with the use of struc-
tural types on the JVM, but a reflective compilation technique that
uses efficient caching brings this cost to acceptable levels for all but
the most critical programs. Generative compilation techniques such
as that of Whiteoak have, in principle, the potential for even higher
performance. On very tight loops, a situation that may be relevant
to certain performance-critical algorithms, generative techniques are
clearly superior. On the other hand, reflective implementations are
likely to yield superior performance when the cost of using structural
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types is distributed throughout the program. Structural types should
in any case not feature prominently in tight, performance-critical
loops on the Java Virtual Machine. Even though Whiteoak can
provide almost native performance, the requirements to allow it
are stringent, and any deviation immediately leads to very poor
results. Therefore, reflective compilation techniques are likely to lead
to higher real-life performance.

From the point of view of the implementation, reflective tech-
niques are also simpler. They only require changing the compilation
scheme for structural method calls and a small runtime library that
implements polymorphic inline caching. Generative techniques, on
the other hand, require changing the compiler to generate inter-
faces for each structural type, changing the compilation scheme for
structural method calls—to adapt the receiver to the structural type
using a wrapper—and require an infrastructure to generate wrapper
classes dynamically and to cache them. A dependency on a code
generation library is added to all programs. Furthermore, loading
generated classes at runtime requires access to the program’s class
loader, which may not be available when running on environments
such as application servers.

There is only one language restriction in the current implementa-
tion: the limitations on type variables in Scala’s structural types. As
was mentioned before, using dynamic types such as those provided
by manifests is likely to lift this restriction. Gil and Maman’s article
does not detail the restrictions that the generative technique imposes
upon structural types, although Whiteoak does not allow “generic
structural types”, a restriction that is similar to that imposed on Scala’s
type variables. We can assume that Whiteoak would have similar
difficulties with type variables in structural types. Other important
features, such as structural arrays, are not available with Whiteoak’s
generative technique. Whether generative compilations techniques
could be used to compile Scala’s structural types, which are part of
a much more complex type system and language than those of Java,

remains an open question.

Reflective compilation techniques are likely not to be noticeably
slower than generative ones in real applications. However, reflective
techniques are simpler to implement, have fewer dependencies and
have been shown not to restrict the language. In this context, it is
worth noting that a recent overhaul of Whiteoak’s source (version
2.1) did not retain the generative compilation infrastructure, leaving
it to be implemented later, and uses a simple un-cached reflective
implementation.
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3.4 Type-safe relational algebra

Let us now step back from the implementation and performance of
structural types, and consider their use in domain-specific program-
ming. To do so, this section discusses the example of a type-safe
relational algebra library [59], which was implemented by Cédric
Lavanchy, under my direction. The relational algebra domain-specific
language provided by the library is automatically converted into soL
strings. However, this second function of the library goes beyond the
scope of this discussion. As was mentioned in the introduction of
this chapter, a relational algebra is notoriously difficult to represent in
object-oriented type systems. Many popular libraries, such as JDBC,
do not even try to integrate the domain within the host language. So
called object-relational systems use a simple mapping that represents
relations as classes. While this allows domain-specific soundness
properties to be checked by the host’s type system, it remains unsat-
isfactory because it restricts the algebra’s ability to join relations.

Lavanchy’s library explores solutions to write type-safe queries on
databases using a relational algebra. To do so, it uses structural types
and compound types (see §3.2.7 of [66]), which better correspond
to the properties of a relational algebra than object types, as we
will see below. Of course, because databases can be modified in
parallel to the programs that query them, the notion of type safety
is not absolute. Instead, it is relative to a given representation of the
database, following the schema below.

e The program contains a static representation of the structure
of the database. This may not be complete but describes the
minimum requirement that are needed by the program.

e Queries against the database are statically checked to be com-
patible with its representation. When reading data from the
queries—that is, when converting domain-specific data to host
values—types are maintained and checked.

e When running the program, its assumptions about the structure
of the database are checked a priori, so that a database of an
invalid type is detected during initialisation.

Full typing extends to the relational algebra operators and to results.
However, Lavanchy’s library is very much a prototype, lacking crucial
features. We will see below that some aspects of the domain-specific
language remain untyped—most notably boolean expressions used
by the select operator. Also, we will see that, while the library is correct
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in terms of typing, the language is missing features that prevent its im-
plementation to return values fitting the types. The flaws of the library
will lead to a discussing about what these limitations demonstrate in
term of existing domain-specific programming support.

The following program is an example of the library’s use, whose
implementation we will discuss in the rest of this chapter. The first
snippet defines the structure of the database as a set of structural
types. The reason for using structural types will become clear below.
Only its fraction that is relevant to the program is represented; the
database may contain many more elements which the program will
simply ignore.

type Person = {
def personId: Int
def firstName: String
def lastName: String

}

type Attends = {
def lessonName: String
def personlId: Int

}

type Lesson = {
def lessonName: String
def teacherId: Int

}

The data encoded by this database concerns teachers teaching lessons
to students. A person can either be a teacher or a student. In
the former case, he is linked to the lesson he teaches through the
Lesson relation; its personId represents the teacher. There is only
a single teacher for a lesson, but he can teach multiple lessons. In
the case of students, it is the Attends relation that defines the link,
allowing multiple students to take multiple lessons. The user of
shared identifiers to associate values is typical of relational data, and
clearly demonstrates that this is not object-oriented data.

The next snippet declares that the three types above are actually
tables in the database.

val person = table[Person]
val attends = table[Attends]
val lesson = table[Lesson]

A table is a base relation that is directly stored in the system; other
relations are obtained by composition using relational operators. A
relation is a set of disjoint tuples, with all tuples the same size and
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containing values of the same type. Therefore, table requires a type
parameter defining the structure of the tuples in the relation. This is
the type that will be maintained when using relational operators to
create new relations. Tables are given names in the Scala program, so
that they can be called later.

The next snippet declares a method that queries the database,
using the relational algebra. It returns the database identifier for a
person of a given name.

def personld(name: String) =
unique(person select { _.lastName == name }).personld

Of all tuples in table person, the select relational operator only keeps
those which lastName field is that being searched for. The unique
method receives the resulting relation and checks that it contains a
single tuple. If it is the case, it returns the tuple, discarding the
relation; otherwise an error is returned. The select operator does not
change the type of the relation.

class Relation[+T] {
def select(predicate): Relation[T]

}

The type of the relation received by unique therefore remains Person.
Scala’s type system can guarantee that reading its personld is safe
and can infer its type as being Int. However, until now, the type
guarantees offered by Lavanchy’s library do not differ from those of
an object-relational mapping.

In the next snippet, we will see how structural and compound
types allow us to type relational operators that wouldn't be allowed
using objects. The query defined below finds the names of all students
of Mrs Hopkins.

def hopkinsPupils =
project[{
def firstName: String;
def lastName: String
A
(person join attends join lesson) select { r =>
r.teacherId == personId("Hopkins")

}

This example utilises two new relational algebra operators: join and
project.
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The join operator Join takes two relations to create a new one by
combining all tuples of the first with all tuples of the second. If the
combined tuples contain fields of the same name, they will only be
joined if they are equal, following the natural join semantics. As an
example, consider the following two relations.

person

personId firstName lastName

1 Barak Simon

2 Leila Kaltenbacher
3 Karmen Michelet

4 Sébastien Mohn

attends

lessonName personId

Math 1
Math 2
Math 4
French 1
French 3

The result of joining these yields the following relation.

personId firstName lastName lessonName
1 Barak Simon Math
1 Barak Simon French
2 Leila Kaltenbacher Math
3 Karmen Michelet French
4 Sébastien Mohn Math

The type of the tuples in this relations does not correspond to any
that was originally declared. In an object-relational mapping system,
no class would be available to type that result. However, Scala’s
compound types allow to define a correct type as a mixin between
Person and Attends.

class Relation[+T] {
def join[U](that: Relation[U]): Relation[T with U]

}

To go back to the example program, the tuples in the relation resulting
of the triple join is a compound type with the following members.
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def personld: Int;

def firstName: String;
def lastName: String;
def lessonName: String;
def teacherId: Int

The project operator When joining relations, not all fields of the
tuples may be necessary. Many may be irrelevant to the query, or only
used internally. A projection keeps a subset of the fields of the original
relation’s tuples. For example, projecting the joined relation above on
the fields lastName and lessonName yields the following, new relation.

lastName lessonName
Simon Math
Simon French
Kaltenbacher Math
Michelet French
Mohn Math

As was the case with joins, the type of the relation resulting from
the projection is none of the three types that were explicitly declared.
Furthermore, the projection type can only have members which name
and type exist in the original relation’s tuples. This property cannot
be represented using object types; the supertype relation of structural
types, however, correspond to it. Therefore, if the projection type is
declared as a structural type, as is the case in the example program,
the typing constraints for the project operator can be defined correctly.

class Relation[+T] {
def project[U >: T]): Relation[U]

}

A compilation error will be generated if the user of the library projects
a relation onto a type that isn’t compatible.

The final snippet uses the relation resulting from the query to print
a list of students.

for (p <- query(hopkinsPupils)) {
println(p.firstName + " " + p.lastName)

}

This code is outside the domain-specific fragment, and uses a stand-
ard Scala for-loop to iterate over the tuples of the relation. However,
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because the domain-specific fragment is assigned types of the host
language, the data it produces integrates perfectly. In this example,
the type of p is the structural type resulting from the projection above.

{
def firstName: String;
def lastName: String;

}

The compiler can check that the two calls to read the pupil’s name are
indeed present on instance p, and that their results are strings.

The rename operator The example above demonstrates that com-
pound and structural types allow to satisfactorily type complex rela-
tional operators. In fact, all but one relational operator can be typed
using similar rules to those described above. The operator that can’t
be typed is the rename operator, where a given field is renamed to
another name in all tuples. For example, if the relation resulting from
the hopkinsPupils query hasits firstName field renamed to givenName,
tuples in the new relation have the following type.

{
def givenName: String;
def lastName: String;
}

Such an operation at the level of types is impossible using nominal
types as well as using structural types.

Ay, there’s the rub!

The impossibility of typing the rename operator is a minor nuisance—
alternatives exist, albeit clumsy ones. Two more pressing issues
need to be considered if the type-safe relational algebra library is to
function.

Instances of types This library must create instances of compound
and structural types when executing certain queries. For example,
each tuple of the relation returned by executing the hopkinsPupils
query is an instance of the following structural type.

{
def firstName: String;
def lastName: String;
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As must be clear from such types do not exist in the Java virtual
machine, and cannot be instantiated. Calling methods on structural
types requires a complex reflective infrastructure, and an even more
complex system would be needed to instantiate them.

Should the Scala compiler be extended with a complex static and
runtime infrastructure that allows instantiating such types? Probably
not because when using structural types without a domain-specific
focus, there is no reason to create instances for them. Values exist
at runtime quite independently of the type that the compiler used
to represent them. For example, structural types would be used
to represent values that do not share a common class, but share a
common method—for example close. However, typing values using
a structural type or explicitly as classes does not imply a runtime
change to the values themselves.

In fact, instantiating structural types seems suspect in a class-based
language. There, class types represent an explicitly defined set of
values: every call to the class’ constructor adds a new element to
the set. Structural types are not defined by listing their elements like
classes. Instead, they are like set operators that are defined by filtering
other sets. Because instantiating a type is adding an element to its set,
types that are not defined as sets but as operations cannot logically be
instantiated.

A similar problem exists for compound types, where the with
operator on types has no corresponding operation on values. Using
compound types, it is possible to take two classes and create a new
type from the union of their members. It is not possible to take two
values and create a new value by uniting their members.

Furthermore, it is practically impossible to give a meaningful
semantics to instantiating structural types or merging two values
into a compound. Structural types are pure definitions, without an
implementation, which would somehow need to be chosen arbitrarily.
Compound values suffer from the fact that the same member may
be present in both values. There is a well-defined semantics for this
in Scala, based on linearisation. However it is delicate when the
linearisation is declared explicitly and would be all but unmanageable
when compound types are inferred, as is the case in the relational
algebra library.

In domain-specific programs that use complex types for sound-
ness, it may nevertheless be necessary to create such structural or
compound types instances. This is because domain-specific types
may not simply represent values created by the program, but also
values created by domain-specific code. In this case, the link between
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values and types is not natural but must be constructed explicitly. For
example, in the relational algebra library, queries have a type that
corresponds to the expected form of the tuples they can return, Upon
execution, they are further transformed into sqL strings, losing any
natural connection to their type that may have been present in the
structure of the query. The result of the query is known to represent
data that is compatible with the type of the relation, but its actual
form—a table of raw, untyped data—has lost its connection to the
type system. The domain-specific library must reconstruct that link
by creating instances of the expected tuple type. Of course, in any but
the simplest cases, this type will be a complex structural or compound
type.

In the relational algebra library, the problem of defining a se-
mantics for instantiating structural or compound types is solved by
domain-specific knowledge. Members of structural types are known
to correspond to fields in the result set. When two values are united
in a compound, the rules of the relational algebra guarantee that any
duplicate members correspond to the same field in the result set.

Expressions In the example of this chapter, the predicates passed
to the select operator where expressed as anonymous functions, and
strongly typed, as in the example below.

person select { p => p.lastName == "Assange" }

However, here again, the type-safe design does not withstand the test
of implementation. Lavanchy’s library requires select predicates to be
provided as soL strings, like JDBC.

person select { "lastName = 'Assange’" }

The reason for this is that the backend of the library must convert
relational algebra expressions into soL strings to be shipped to the
database. The various operators are accessible to the library because
they are in fact constructors for a data structure that represents the
relational expression. On the other hand, the predicate is simply an
arbitrary, boolean Scala expression. Of course, a technique like ZyTyG
could be used to parse domain-specific predicates. However, as was
thoroughly discussed in Chapter [2} this would be only marginally
more type-safe than using strings. In any case, creating a new domain-
specific syntax for select predicates would be counterproductive,
as one of the library’s goal is precisely to allow relational data to
be accessed using Scala types and concepts. In other words, the
embedding domain for a relational algebra library must be limited
to correctness, semantics and data.
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3.5 Structural types for domain-specific programming

At the beginning of this chapter, I supported our interest in structural
types by the additional flexibility they may offer to domain-specific
programming. Clearly, the typing paradigm they represent is fun-
damentally different from other types. So much so that, contrary to
other of Scala’s complex types, structural types cannot be reduced
to the object-oriented types of the Java virtual machine. Lavanchy’s
type-safe relational algebra library shows that, in some cases, they
do indeed offer a flexibility that object types do not. But structural
types match perfectly with the typing discipline of relations—in fact,
relational types are a form of structural types. Is it that a relational
algebra is a particular case that happen to benefit particularly from
structural types? Or are relational algebras representative of a larger
family of domains with similar type properties?

An informal poll of Scala developer concerning their use of struc-
tural types hinted to the following usage patterns. Most structural
types serve as a way to assign an interface to code that is out of a
programmer’s control. For example, structural types allows for added
flexibility when loading third-party modules by reflection, whose
interface may be changing or may be inaccessible. This is obviously
not an example of domain-specific programming. However, some
clearly domain-specific uses of structural types were also reported.
For example, one user mentioned how structural types may be useful
to type configuration attributes for OpenGL shaders. There, the type
and number of arguments differs depending on the shader’s version
and model. Structural types define the shader arguments required
by the domain-specific program, and allow them to be composed. In
fact, this example resembles in its basic structure what is done in the
relational algebra library. First, the required structure of the tables or
shaders is defined. Then, depending on the relational operations or
shader code, these types are refined or joined.

We cannot at this point reach definitive conclusions about the
role that structural types may play in domain-specific programming.
However, the discussions in this chapter call for a more fundamental
questioning about the relation between language abstractions used for
domain-specific programming, and the implementation of domain-
specific libraries. At the end of the previous section, we discussed
two issues with the implementation of the type-safe relational algebra
library.

1. Types available to the compiler are also needed by the runtime
of the domain-specific library to implement its semantics.
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2. Fragments of the original source code representing predicates
are to be evaluated according to the domain-specific semantics
implemented by the library.

These problems are independent of whether structural types are a
suitable abstraction for domain-specific programming. Similar issues
arise using different abstractions. To generalise, these problems have
to do with the fact that a domain-specific language implemented as a
library breaks the traditional barrier between the static and dynamic
parts of the program. A fraction of the compilation—that related to
domain-specific code—is outsourced to the runtime library. By that
definition, a very similar issue is also raised in Chapter [2| concerning
parsing of domain-specific syntax.

I believe that blurring of the traditionally clear separation between
static and dynamic elements is a crucial characteristic of domain-
specific programming. Aggressive use of general-purpose language
abstractions in ZyTyG and structural types contribute to making
domain-specific programming better. But both techniques succumb
with the same symptoms: they require information that is part of
the confined static domain, and that is inaccessible from their dynamic
position. This is a fundamental problem that requires abstractions
allowing library code to break down the walls of the compiler. The
second part of this thesis picks up this assumption, to consider which
such abstractions already exist, and what can make them better for
domain-specific programming. As we will see, most of the issues
raised in this and the previous chapters can be overcome by using the
right metaprogramming abstractions.

At the end of this part, we have given substance to the first portion
of the conjecture underlying this thesis. We have also seen what
differentiates domain-specific libraries from other.

Modern statically-typed object-oriented languages such
as Scala have language abstractions that allow to satis-
factorily host domain-specific programming. Domain-
specific syntax, semantics, correctness properties and data
can be provided without preprocessor or custom com-
piler. However, more static data must flow to the runtime
implementation of domain-specific libraries than what is
required by other libraries.
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On Metaprogramming
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Chapter 4

Controlling Code and Structure
of Programs

The two embedding techniques for domain-specific languages that
were described in Part |[| exemplify how one can utilise existing gen-
eral-purpose constructs to encode embeddings as libraries. How-
ever, these examples also demonstrate the weakness of such tech-
niques. When doing domain-specific programming, the strict separ-
ation between static and dynamic information is problematic. Some
static knowledge is required by the runtime of domain-specific librar-
ies.

The first example, in Chapter 2, described how to lift domain-
specific fragments using the ZyTyG technique. Existing host language
abstractions go far in terms of embedding an arbitrary syntax, and it
is easy to integrate values of the environment into domain-specific
fragments using implicit conversions. Indeed, a ZyTyG embedding is
entirely defined statically; at runtime, values are created according to
a pre-defined plan, like in any other program. There is no unusual
interaction between the compiler and runtime. However, ZyTyG is
poor when it comes to verifying correctness. In most cases, host
language types cannot be used for defining syntax a la ZylTyG and
simultaneously to provide other correctness properties. Alternatively,
type checking could be done at runtime by specialised code in the
library, when domain-specific expression are evaluated. Of course,
this makes of domain-specific fragments second-class citizens, which
are not checked statically. Still, this could be a good compromise
in practice. However, with techniques like those we have discussed
in Part [l even this can’t be done. The problem is that a ZyTyG
domain-specific fragment does not live in isolation: they refer to other
values, methods, maybe other domain-specific fragments. The type
information about these values and methods is not generally available
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at runtime, as we will see in Chapter|f] One hits again the boundary
between the compiler and runtime.

The second example, in Chapter[3} described how structural types
can be used on data-based domain-specific languages, such as a
relational algebra. Problems similar to those in the first example arise
here too. The runtime evaluation of domain-specific fragments needs
access to static type information. It isn’t to check correctness, which is
taken care of by structural types, but to implement the right semantics.
Furthermore, this example also demonstrates how Scala expressions
ought to be used to define the predicates of “select” statements, but
cannot. This would require host language fragments inside domain-
specific code to be accessible to the domain-specific library as code,
not as reduced value. With either techniques that we have discussed
in Part[} this cannot be done.

It appears that library-based domain-specific embedding tech-
niques stand out through the way they straddle the dynamic and static
portions of the program’s execution. Both examples in Part [| do not
cover the whole embedding surface—the first missing correctness, the
second semantics and syntax. Both are restricted because, to fill-in
that missing area requires hooking into the compiler in a way that
isn’t possible using first-order programming abstractions. Domain-
specific programming requires the compiler to leave traces for the
runtime, and requires the runtime to have access to some of the com-
piler’s logic. This situation certainly explains why domain-specific
programming has long been tied to dynamically-typed languages
with a small syntax, such as LISP, which do not enforce much of a
separation between the analysis of the program and its evaluation.

On the other hand, we have seen in both examples above that
domain-specific programming can greatly benefit from statically eval-
uated types—more precisely from abstractions that derive from it.
ZyTyG benefits tremendously from implicit conversions, which re-
quire static types. The relational algebra library builds its correctness
properties on the static type system. To take advantage of these
benefits, and still reduce the separation between static and dynamic
portions of the program, requires metaprogramming.

Metaprogramming has been used to describe a variety of tech-
niques, some of which will be discussed below. The usual definition of
“programming the program” is so vague as to be almost useless. This
dissertation aims to provide a form of metaprogramming that allows
the running program to observe and modify its state in order to adapt
its domain-specific behaviours. It describes abstractions and facilities
that create a tighter bond between runtime and compiler. It goes
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beyond Java-like reflection, which only gives access to the program’s
interface and to its values. It is however not a fully dynamic form
of programming, as it aims to stay within the constraints imposed
by strongly typed virtual machines. It is a compromise that opens
enough gaps in the wall between static and dynamic data to make
domain-specific programming possible.

In the remainder of this chapter, we will discuss existing meta-
programming techniques. Some will serve as inspiration for the
work in subsequent chapters. However, they differ in their focus,
being general-purpose constructs and not targeted at domain-specific
programming. By concentrating our efforts on metaprogramming
for domain-specific concerns, these ideas can be simplified to better
integrate with the design of Scala.

This does not imply that metaprogramming discussed in this dis-
sertation is only useful for embedding domain-specific languages. In
fact, as I hinted in the introduction to Part domain-specific program-
ming is a broad concept that can be applied to many problems: ex-
tensible programs using plugins, application servers or other hosted
applications, object-relational mapping frameworks, aspect-oriented
programming, etc. Any problem that requires deeper changes than
combining language abstractions in their most literal sense may be
considered as domain-specific. For example, extensible programs
require swapping in segments of code, and type-checking them.
We have already discussed in Chapter [3| how a relational algebra
is domain-specific. As for application servers, the multiplication of
XML files describing the static structure of applications are a telltale
sign that servers would require direct access to static information. It
is no coincidence that all the applications that were just mentioned
are usually heavily reliant on reflection. Indeed, I believe there
is a very fundamental relation between reflection—one aspect of
metaprogramming—and domain-specific programming.

The remaining two sections of this chapter analyse the state of the
art of various relevant metaprogramming techniques. They discuss
two major families of metaprogramming abstractions in statically-
typed languages. In line with Scala’s objective to integrate functional
and object-oriented paradigms, the first has its intellectual origin in
functional programming, the second in object-oriented. In we
discuss staged metaprogramming, which makes abstract syntax trees
part of the program while maintaining static type safety guarantees.
Mirror-based reflection rectifies some of the flaws of traditional reflec-
tion by enforcing certain design properties. It is described in
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4.1 Related work: staged code

For every language, there is a person who wants to see it extended
by a new language construct. It is particularly true for language
that originated with a very small set of features but nevertheless
became popular, such as LISP. This may explain why metaprogram-
ming tools to control language semantics where originally linked
to this language. Smith’s reflective processor [85] opens the way to
staged metaprogramming. It describes the program’s evaluation akin
to an infinite stack of processors, each implementing that below.
Reflective procedures in the program are evaluated as part of the
current processor’s implementation, that is, describing the semantics
of the processor below. This technique was used to implement such
semantically complex systems as the CLOS object system for LISP [4].
However, metaprogramming in LISP is that of dynamically-typed
language. For example, the system does not ensure that variables
occurring in reflective fragments are correctly bound in the available
environment.

Because such issues cannot easily be left aside in statically-typed
languages, these are less amenable to staged metaprogramming. The
evaluation semantics upon which their type systems depend are
defined in terms of a given processor. Conceiving a type system that
fits an evaluation paradigm with an infinite stack of processors eval-
uating each other took the best part of a decade. Taha's MetaML [86,
88] is a statically-typed, functional, multi-staged, hygienic language.
Contrary to previous systems which use implicit operators, it is based
on four explicit constructs to control staging:

1. build a representation of the code of an expression;
2. splice a fragment of code into another;

3. evaluate a fragment of code;

4. lift an evaluated value as code.

The soundness guarantees it offers are very strong: the multi-staged
program is type checked once and for all to ensure safety in all sub-
sequent phases. While MetaML remains the model of staged meta-
programming, other systems have modified some of its properties for
other uses. For example, Template Haskell [81] retains MetaML's type
safety, but restricts metaprogramming to happen only statically for
reasons of performance and represents code as an algebraic datatype.

While not originally intended for domain-specific programming,
MetaML-like languages proved to be quite apt at it. See for ex-
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ample Czarnecki’s comparison of domain-specific programming in
MetaOCaml, Template Haskell—two variants of MetaML—and C++
templates [29]. In fact, Ganz et al. showed that MetaML can be seen
as a generalised macro system, by defining their MacroML system
in terms of MetaML constructs [37]. Similarly, Kim et al. extended
ML with LISP-like staged metaprogramming constructs, which they
claim is more user friendly, while maintaining strong soundness
guarantees [46]. A variation particularly relevant to our concern
is Converse [90], a language that mixes staging with a specialised
macro system to provide for domain-specific syntax. This language
is thereby well suited for implementing domain-specific semantics
using staged metaprogramming, and domain-specific syntax using its
macro system.

MetaML and its variants are functional languages. Extending
safety of a similar nature to object-oriented multi-staged languages is
not trivial. Pasali¢ and Linger proposed a calculus of that nature [72]],
demonstrating the constrained nature of the resulting object model.
Fahndrich et al. describe compile-time reflection for C# [35], a main-
stream object-oriented language. It maintains strong soundness guar-
antees amongst other by requiring explicit control of scopes in the
metaprogramming code. Despite that, the expressiveness of meta-
programming is limited, as described in the article’s “future work”
section.

Other languages inspired for staging by MetaML have comprom-
ised its strong safety guarantees in favour of practicality or compatib-
ility. Nemerle [84] is a functional staged language, that is compiled
for the .NET platform. Because it allows inspecting and modifying
declarations directly, its static type guarantees are not as strong as
those of MetaML. It does however provide access to the compiler’s
type checker, making type checking an integral and explicit part of
metaprogramming code.

While MetaML-like languages stage the definition of their semantics,
Shields et al. [82] extend the paradigm in what they call “staged type
inference”. There, the type inference of a staged expression is itself
staged, so that it happens on the expression during the stage when
it is evaluated. The system maintains overall soundness by requiring
the inferred type to be compatible with its static approximation. This
allows to write staged metaprograms which structure depends on
dynamic values—for example dynamically loaded code—, something
that MetaML-like languages cannot. Template Haskell, which was
already mentioned, is also inspired by this technique. However, the
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complexity of staged type inference calls its applicability to main-
stream object-oriented languages into question.

Staged type inference results from research on simpler “dynamic
typing” for statically typed languages. This was originally introduced
by Cardelli in the Amber language [14], and refined by Abadi et al. [1,
2] as well as Leroy and Mauny [61]. The underlying idea is to use
a dynamic runtime operation that, for a given expression, returns its
value alongside a representation of its static type. The program can
then define its behaviour in terms of static types.

This form of on-demand dynamic types allows the program to ob-
serve the shape of data in a manner that isn’t usually available to static-
ally-typed languages. Lammel and Peyton Jones, in their “scrap your
boilerplate” series of papers [52,53,/54] propose a number of operators
based on Haskell dynamic types that allow to solve certain prob-
lems using a metaprogramming-like approach. These problems—for
example data serialisation—traditionally require a large amount of
boilerplate code to treat all possible cases. Boilerplate is scrapped by
using dynamic types to configure the code to each case at runtime.

The benefit for embedded domain-specific programming of a
technique that configures code based on types has already been re-
cognised. Pang et al. use it to implement a domain-specific language
for dynamically loading software components in Haskell [71].

4.2 Related work: towards a separation of concerns

This section discusses another aspect of metaprogramming: how to
design the data structures representing program data in languages
that provide direct access to it. This data can either be dynamic, as in
reflection libraries, or static, as in Nemerle. In both cases, however,
these structures play a particularly fundamental role because they
represent the very nature of the language. Language constructs are
carefully tailored to suit programmers’ needs. Their representation
ought to benefit from the same care.

In 2003, Lorenz and Vlissides [62] propose a design for a reflection
library that decouples its interface from its implementation to make it
pluggable. Simultaneously, Bracha and Ungar [[11] provide a series of
guidelines for the design of a reflection library:

o its interface should encapsulate its implementation, so that meta-
programming code does not depend on it;

o it should stratify the programming and metaprogramming sys-
tems, so that the latter can be implemented as a separate system;
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e there should be ontological correspondence between base- and
meta-level constructs.

Most reflection frameworks developed before did not follow some
or all of these guidelines. Amongst other things, this prevented
languages with multiple sources of reflection, despite it having been
envisioned in the seminal paper on LISP reflection [85]. Compliance
with these guidelines has become standard practice, for example in
Coppel’s prototype of a Scala reflection library [23].

As was already observed in Bracha and Ungar’s seminal article,
mirrors provide a solid intellectual foundation to refine reflection
methodologies. For example, Ungar discusses how mirror principles
were applied in a virtual machine and development environment for
Self to improve code reuse and integration [91]. A similar intuition
will be at the basis of Chapter [/} which aims to unify some aspect of
compilation and reflection.

Finally, and to tie the discussion on reflection with that on staging,
some considerations on reflection libraries design also apply to data
structures representing code. Denker et al. describe the design of
a reflection library that gives access to the bodies of methods [30].
It provides a framework to modify program trees, and a pluggable
type system to verify certain metaprogramming properties. Although
originating from a very different background, these systems provide
similar services to those provided by Nemerle.

I believe that this similarly exemplifies a reality of current meta-
programming research. There exist a variety of solutions to spe-
cific metaprogramming problems, from a variety of sources and
traditions. We have discussed some in this chapter, and more in
Chapter However, while they all aim to solve related issues,
larger, underlying trends that may unify them do not yet emerge.
A unified theory of metaprogramming would provide tremendous
benefits. Staged programming as proposed in MetaML has been
a major contribution in that regard. However, as we discussed in
this section, it is unclear whether it can function for languages built
around mainstream concepts—object-orientation, use of reflection, et
cetera. While very limited in scope and pretension, the second part
of this dissertation aims to explore some alleys that may contribute to
unifying certain aspects of metaprogramming. Our focus on domain-
specific programming, which oftentimes combine dynamic and static
aspects, will lead us to consider metaprogramming at the border
between the compiler and runtime.
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Chapter 5

Compiler-Supported Code
Lifting

Staged metaprogramming like Taha’s MetaML shows attractive prop-
erties when it comes to controlling the semantics of a language. Se-
mantics becomes part of the program—it becomes a metaprogram—,
so that it can be controlled and defined to suit domain-specific needs.
The language’s static type system guarantees once and for all that
all programs resulting from the metaprogram are correct. Further-
more, if staged evaluation can partially happen during compilation,
runtime performance may be very high. However, we are interested
in considering MetaML-like abstractions in light of domain-specific
programming in Scala and related languages. This raises certain
issues:

1. staging is explicit, which means that domains cannot be trans-
parently embedded;

2. proposed staging methods that are compatible with mainstream
object models are either not type-safe, or restrict metaprogram-
ming possibilities;

3. partial evaluation is difficult to provide in Scala like in other
object-oriented languages [80) [79], which reduces prospective
performance benefits.

Because of that, MetaML-like abstractions are not a present solution
to domain-specific programming in Scala, and may never be. The first
two items are particularly worrisome, as they jeopardise our goal of
transparent embeddings and the possibility to replicating MetaML'’s
strong soundness properties in Scala.

Nevertheless, the staging approach described in this chapter is
inspired by Taha's work. But instead of explicit syntactic operators
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for staging, it uses the host language’s type system to control lifting.
This is the main novelty of this approach. On the other hand, it does
not propose a solution to implementing full soundness guarantees on
the staged metaprogram. Instead, later-stage metaprogramming op-
erations are applied to typed data structures representing the code—
lifted code—, thereby allowing further type checking to be done
explicitly if needed. This approach is similar to that of Nemerle.
Scala’s staging does provide support to maintain hygiene—by staging
only closures, which automatically lift all necessary references from
the environment. As we will see, the technique restricts the number
of stages to only two: static and dynamic. This makes staging
significantly simpler and, I argue, is sufficient for domain-specific
embeddings. There, only two stages are relevant: that of compiling
the host language, and that of compiling domain-specific expressions.
Like in the examples of Part [l the first stage happens statically, the
second dynamically.

Scala’s code lifting technique is used for domain-specific lan-
guages that utilise the host language’s grammar and type system, but
change its semantics. To go back to the model of domain-specific
embeddings in Chapter [1} it provides for the following embedding
coverage.

syntax

correctness data

semantics

Note however that, contrary to library-based embedding strategies
described in Part [l this technique is not exclusive of others. In other
words, it is for example possible to utilise code lifting in conjunction
to structural types, thereby obtaining a larger embedding surface.
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syntax

correctness data

semantics

The simple underlying idea of Scala lifting is that expressions of
the host program that have a special Code type follow a compilation
path that lifts them. For lifted expressions, a representation of the
code is generated instead of executable code. The Code type takes
an argument that defines the type of the lifted expression, which is
checked to be correct. At runtime, this representation is interpreted by
a domain-specific library that implements the required semantics, in
a way similar to that described in Chapter[2} For example, this may be
done by rewriting the expression to another language and sending it
to a specialised tool for interpretation. Alternatively, it may be directly
evaluated by an interpreter provided by the domain-specific library.

This chapter will start with a description of the compiler mechan-
isms needed to implement two-stage code lifting in the Scala compiler.
It will continue with a discussion of a usage example that transforms
for comprehensions on XML documents into XQuery expressions.

5.1 Staged compilation

To start, let us consider a simplified view of the compilation and exe-
cution of a non-staged program. First, the source code of the program
is read and transformed into an internal compiler representation, usu-
ally an abstract syntax tree. In statically-typed languages, the program
is further analysed by the type checker to understand its structure,
assign symbols to names and give types to elements of the tree.
Furthermore, analysing the program allows to detect incoherences
in the structure of the program such as dereferencing undeclared
variables or incorrectly calling methods. These first two phases are the
front end of a compiler. In the back end, a number of transformations
are applied to the program, progressively encoding abstraction using
more basic structures. At the end of this process, a binary program
is generated, which is devoid of programming language abstractions.
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The binary program is evaluated by the machine—either an actual
processor or a virtual machine—and a result is obtained.

Source

Read +—{ Type | Generate

@inar@—» Evaluate

In a two-stage compilation, the traditional separation between
compilation and evaluation is relaxed. Besides machine instructions,
binary files contain fragments of abstract syntax trees with symbols
and types. Parts of the program can be evaluated directly, but other
fragments must first be compiled in what is called a “second stage”
of compilation. In principle, the same process can be repeated in
the second stage compiler, leading to multiple staged compilation,
similar to MetaML. In this chapter however, we will focus on two-
stage compilation. As we will see, this simplified form is sufficient
for solving many problems related to domain-specific programming.
Typically, the first stage of compilation is concerned with general-
purpose sections of the program, while the second stage handles
domain-specific compilation. The complexity of the programming
model for two stage compilation is higher than that of traditional
compilation, but remains more manageable than with an arbitrary
number of stages.

104



Chapter 5: Compiler-Supported Code Lifting

Source

Read — Type |— Generate

Generate — Evaluate

In a staged program, the compiler front end remains identical to

that of a normal compiler. At the end of the type analysis phase,
the program is separated into fragments that are generated normally,
and others that are lifted to the second stage. The means through
which lifted fragments can be differentiated is described later in
this section. Lifting then transforms second stage fragments into
a binary representation of the compiler’s abstract syntax tree. In
Scala, this is done by replacing lifted fragments by code that, when
evaluated, results in a data structure similar to the abstract syntax tree.
Below is a simplified example of this transformation. The graphic
corresponds to the abstract syntax tree obtained for the expression
(new X).y(this.z)

Apply
_— ™~
Select Select
/N VRN
New Ident(y) This Ident(z)

Ident (X)

How lifted trees are used during evaluation is very dependent on
their meaning in the program. If they represent fragments of domain-
specific code, they will usually be processed by the domain-specific
library. To do so, it may interpret the trees using domain-specific
semantics that differ from those of the host language. Alternatively,
it may compile the trees into second-stage binaries that can be eval-
uated by a specialised, domain-specific machine. This second case is
described in the next section, using queries on XML documents as the
domain, and an XQuery processor as the domain-specific machine.
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In code lifting, the same expression may either be compiled nor-
mally or lifted, depending on its role in the program. By themselves,
lifted and non lifted expressions look identical. It is their environment
that defines their role, so that the program must contain additional
information about which expressions are lifted, and which are not.

In MetaML, lifted code fragments are marked syntactically using
the bracket operator. For example, 3+4 is evaluated to 7, while <3+4>
is lifted to the next stage. In Scala, an expression can also explicitly
be lifted by calling the Code.lift method. It takes an expression
of an arbitrary type T and returns the lifted expression, of type
Code[T]. However, Scala’s explicit staging infrastructure does not have
the richness of MetaML. Only one of its four staging operators is
available: that building a representation of code. Splicing or lifting
values have not been implemented, although it would be possible.
As for MetaML evaluation operator, which controls how code is
evaluated over multiple stages, it is unnecessary in a simpler two stage
metaprogram.

However, while explicit staging operators are available, the novel
method to lift code in Scala is type-driven. Simply stating that
an expression has type Code[T] will stage it. For example, in the
simplified example below, the body of x is compiled directly, while
that of y is lifted.

val x: Int = 3*a+b

val y: Code[Int] = 3xa+b
def f(c: Code[Int]) = ...
f(3*a+b)

The same technique can be used for method parameters, so that when
method f is called, its parameter is passed as code instead of being
passed as value.

When compared with syntactic code lifting, the responsibility for
deciding to lift code moves from the call site to the site of declar-
ation. This is a particularly attractive property for domain-specific
programming because the domain-specific library can request lifted
code without any involvement of the user. However, we will see in
the example below that controlling lifting through types can lead to
situations where insufficient code is lifted.

We will now shortly discuss the changes that were required in the
Scala compiler in order to implement a prototype of code lifting. The
implementation is split into two parts.
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1. A compiler phase that replaces calls to the Code. 1ift method by
the data structure that represents the lifted expression. In the
Scala compiler, this phase is called LiftCode.

2. Small modifications to the type checker in order to automatically
insert calls to Code. lift when appropriate.

Lifting code The LiftCode phase is implemented as a transforming
traverser, which searches the entire abstract syntax tree of a program
for any call to Code.lift. When such an occurrence is found, the
subtree corresponding to the method’s argument is passed to a re-
ification method. Reification transform an abstract syntax tree and
the corresponding symbols and types into a new tree that, when
compiled and evaluated returns a representation of the original tree.
For example, let us consider that the expression lifted by Code.lift
is this.z. In the compiler, this expression is represented by the
following abstract syntax tree.

Select

/N

This Ident(z)

Reification will transform this tree into another tree corresponding to
the following expression.

new Select(new This(), new Ident("z"))

This expression, when executed, builds the original abstract syntax
tree for this.z. Internally, the reified expression is itself represented
as a tree depicted below. The full tree being too large and complex to
be of interest, only its left side is fully displayed.

Apply
Select
SN
New Ident(init) ’new This()‘ ’new Ident("z")
\
Ident(Select)

This transformation obviously implies a significant increase in code
size. However, its implementation in the compiler’s LiftCode phase is
relatively straightforward:

e the reifier rewrites all compiler symbols, types and trees to
equivalent scala. reflect instances, which are part of the public
standard library;
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o the injector serialises the scala.reflect instances as an abstract
syntax tree of class constructors and literal values, following the
model described above.

Type-directed lifting As was mentioned above, the preferred way of
defining staging expressions in Scala is implicit, by giving or inferring
a Code type. Because LiftCode relies on explicit Code. 1ift invocations,
these must be added in an earlier phase.

The type Code[T] is special, as it is assigned to an expression which
doesn’t itself return a value of type Code, but of type T. Let us assume
that the Scala type system contains a judgement like the following—
there is no formal type system for Scala so that it is illustrative only.

T'kFe:T ~¢

This judgement gives a type T to an expression e in an environment
I', while simultaneously rewriting e to ¢’. The rewritten expression
is assumed to have the same type as e. Type-directed code lifting is
defined by the addition of the following rule to the judgement above.

I'ke: (T, =T,

'k e: Code[(T},) = T;] ~» Code.lift(e)

This rule implements the following properties.

e Only function types (* = *) can be lifted—the reason for that is
hygienic and will be detailed below.

o The type parameter of Code defines the type of the lifted expres-
sion, which must be valid within Scala’s normal type system.

o An expression of type Code is rewritten as a call to Code. 1ift.

Note that the expression resulting from the rewrite is correct by Scala’s
original type judgement, because of the signature of Code. 1ift:

object Code {
def Lift[A](expression: A): Code[A] = ...
}

Because the addition of explicit lifting calls is directed by types,
possibly including inferred types, this transformation and the type
checker are interdependent.

We will not delve into the details of the implementation of Scala’s
type checker. Suffice to say that the Code rule is implemented as
an extension of Scala’s Typers class. Because it is only relevant for
expressions with a function type, it is part of the typedFunction
method. There, it tests for Code types to modify typing and activate
the addition of Code. 1ift.
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On hygiene As was mentioned in the introduction of this chapter,
the staging system described here does not aim to maintain a level of
type safety like MetaML. It does, however, aim to support hygiene. A
staging or macro system is hygienic if definitions in staged fragments
or macros are guaranteed not to collide with other definitions upon
expansion. Consider for example the following program.

val code = {
val a = 40
Code.lift({() => a + 2})

val a = 0
evaluate(code)

}

If staging is hygienic, the evaluation of code will yield 42, if it is not, the
result will be two. In the former case, the reference to a remains with
the value defined in the first block, where it belongs. In the latter case,
the reference is rebound to whatever local value of the same name is
available, which is most likely not the expected behaviour.

The staging mechanism discussed here is intended to provide a
domain-specific embedding library with a representation of code to
be evaluated at runtime. The implementation’s evaluate is domain-
specific, but is likely to use a form of dynamic reflection to access
values referenced from the lifted fragment. A naive implementation
would evaluate the example above by reflectively searching for a local
value named a, leading it to a non-hygienic implementation. However,
the semantics of closures in Scala will have correctly bound the values
composing their environment, making them available by reflection to
the domain-specific library. Requiring code implicitly lifted through
its type to be a closure does not guarantee hygiene but makes it easy
and straightforward—the domain-specific library would have to go
out of its way to be unhygienic.

5.2 The XQuery for Scala domain-specific language

To give a concrete example of how code lifting can be used as a
metaprogramming tool for domain-specific programming, we will
discuss a library that implements query shipping for XQuery in
Scala. It was implemented by Fatemeh Borran as part of her master’s
thesis [8], which I supervised. Query shipping is a method through
which XML-related code fragments in Scala are transformed into
XQuery code and sent to a standalone XQuery database system. This
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can greatly improve performance of XML-related operations as the
overhead of converting Scala fragments into XQuery code is quickly
compensated by the performance of the XQuery engine when dealing
with complex queries. Furthermore, because XQuery queries are
generated from Scala code, the user of the library needn’t learn a new
language. This method is a typical example of embedded domain-
specific programming where the domain-specific language keeps the
host language syntax, but changes its performance semantics and
data.

The basic implementation of the query shipping library is relat-
ively straightforward. Scala code that accesses XML data stored on an
XQuery database obtains the data using an API-provided load call
that reads the database. The data can then be treated as a simple
set of XML elements, and queried using standard Scala constructs,
particularly for comprehensions. Obviously, performance would be
very poor if the data was actually queried by downloading the entire
database and then running queries on the data locally. This is why the
queries must be rewritten. To do so, the API requests lifted code for
queries by declaring parameters with Code types, when needed. The
Scala compiler automatically lifts the query expressions. At runtime,
the abstract syntax tree corresponding to the Scala code is built as
described in the previous section. Internally, the library contains a
compiler that transforms lifted Scala trees into XQuery query strings.
Finally, these can be sent to the XQuery system, returning the same
value that would have been calculated by the Scala expression without
lifting.

To give an example of the use of this library, consider the program
below.

Transform.trans{ () =>
for (
val b <- load("bib.xml") \ "book"
b \\ "price" < 10.0
) yield b
}

Method trans is the library’s lifting and XQuery compilation method.
The library does not directly execute XQuery queries but instead
generates Scala abstract syntax trees, which, when evaluated, run the
XQuery query string on the database system. This implementation
therefore assumes the presence of a Scala interpreter, which was not
part of Borran’s system. This being said, the resulting value of the
program above is the abstract syntax tree corresponding to the code
that follows.
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load(new java.io.StringReader(XQuery.run(""""
for $b in doc("bib.xml")//book where
$b/price < 10.0
return $b

"))

The transformation from Scala for comprehensions to XQuery
code is done through a number of rewrite rules described in detail in
Borran’s thesis. We will not discuss the tree transformation logic here,
as it is of little interest to the matter at hand. However, the remainder
of this section will consider some weaknesses of the implementation
that are relevant to code lifting for domain-specific programming in
general.

Because XQuery is a limited language, not all Scala programs can
be transformed into XQuery. In such situations, the library generates
an error at runtime. In principle, this issue may be circumvented
by using a best effort approach to domain-specific transformation.
The largest fragment of the query code that has a corresponding
XQuery expression is transformed, the remaining part is left in Scala.
Obviously, this process requires that the library transforms a syntax
tree to another tree, as is done in this library, and not directly to
XQuery strings.

Another limitation is that the transformation covers at most one
lifted expression. Oftentimes, it would be more efficient to generate
a single database query that answers multiple program queries. This
allows the optimiser of the database system to run more efficiently,
and may reduce the amount of data being transferred between the
server and the application. The lifted code approach described above
allows such an implementation. By not transforming lifted code
to XQuery eagerly, the transformation may happen on larger code
fragments obtained by merging previously lifted queries. It should
be noted, however, that creating useful larger queries that can then
efficiently be optimised by the database is non trivial, and beyond the
scope of Borran’s thesis or of this discussion.

Borran’s library also suffers from that it does not explicitly consider
the problem of free variables in lifted code. By assuming the existence
of a syntax tree interpreter, it simply generates trees that reference free
variables. For example, consider the following query, which is similar
to that above except for the fact that the lifted expression contains a
free variable x.
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val x = 100.0
Transform.trans{ () =>
for (
val b <- load("bib.xml") \ "book"
b \\ "price" < x
) yield b
}
The trans method will return for the lifted expression the following
code.

load(new java.io.StringReader(GalaxTest.run(
for $b in doc("bib.xml")//book where
$b/price < """" + x.toString +
" return $b"

)))

This expression simply references the identifier x to copy its value
into the XQuery query string. The code must then be interpreted
within the context of the original expression. To do so, the required
interpreter would have to obtain the value of x through reflection or a
similar mechanism.

Finally, the library also demonstrates one issue with type directed
code lifting. Method trans is defined in a way similar to the following.

def trans[T](code: Code[T]): Code[T] = ...

This means that whatever expression is passed to trans will auto-
matically be lifted. However, this property does not automatically
propagate further than the argument of the method. For example,
in the following code, the lifted code fragment will simply be “q”.

val g ={ () =>
for (
val b <- load("bib.xml") \ "book"
b \\ "price" < x
) yield b
}

Transform.trans(q)

The relevant code fragment will not have been lifted by the compiler,
and will therefore be unavailable. To correctly compile the example
above requires the user to annotate value g with type Code [NodeSeq].
We see in this example that type directed code lifting, as described
above, is not in practice transparent to the user.
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5.3 Discussion and analysis

Metaprogramming on the structure of code brings the ability to
embed domain-specific programming that control the semantics of
the host language. This form of metaprogramming is popular because
it solves domain-specific problems without programmers needing
to learn specialised domain-specific languages. The host language’s
syntax remains the same, its semantics becomes domain-specific. Of
course, this requires that the changed semantics remain meaningful
with the original syntax. In practice, as in the example of the previous
section, the domain-specific semantics are often indistinguishable
from that of the host language, and only modify compilation.

Microsoft’s LINQ system [9] gives an idea of such an ability’s
attraction. LINQ is part of the .NET 3.5 framework, where it compiles
host language expressions—for example in C#—to sqL [51] or, like
Borran’s system, to XQuery [16]. To do this, it uses a series of
technologies, a key one being the ability to extract expression trees.
It was released about one and a half year after Borran’s work, and
proved to be immensely popular because it hides the complexity
of the platform. Although an application may access data from a
remote database, code can be written as if that data was stored in the
program’s own memory and using its own data structures. In Scala
like in LINQ, using types to mark lifted fragments makes domain-
specific programming mostly transparent to the user.

While sufficient for LINQ-like problems, the type-directed code
lifting technique is limited in its ability. When compared to MetaML,
it cannot offer the same soundness guarantees or an unbounded
number of metaprogramming stages. For library-based domain-
specific programming, these limitations are acceptable, because two
stage programming is sufficient to implement such libraries, and
because its dynamic nature is unlikely to allow for strong type safety
guarantees anyway. However, there are at least two limitations that
are problematic for domain-specific programming. Both have been
pointed out in the example of the previous section.

1. Although closures favour hygiene, domain-specific libraries are
still required to use reflection to reference declarations from
lifted closures. The lifting framework does not provide direct
support to access these values.

A possible future extension is to utilise the knowledge at compile
time, during reification, to adorn reference in the abstract syntax
tree with getters when appropriate. These getters are defined
using runtime reflection, which relies on the names of the
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closure class and of its lifted variables. This information is easily
accessible at compile time.

2. Only expressions whose indicated or inferred type is Code are
lifted, but no code that depends on them. If the lifted expression
is, for example, a reference to a method, lifting does not provide
a way to obtain the code of that method. If the body of the
method ought to be staged, the user will have to mark it as
Code, thereby exposing the staging. This is similar to what
happens with MetaML, but is undesirable for domain-specific
programming.

A possible solution would be to store an abstract syntax tree
representation of all methods and fields. References in lifted
code fragment could either be treated as opaque, or further
queried for their code. Storing all trees would be costly in terms
of binary size, but may not be unacceptable since code can be
stored in very compact form [48].

The solutions to both problems share the property that they ex-
pand the interface of lifted code to allow further exploration dynam-
ically. To better support domain-specific programming, code lifting
brings static information to the runtime of the program; a theme that
has been thoroughly discussed in the previous chapter. However, we
see here that this static information cannot live in isolation once it
enters the dynamic environment. It needs to tie into the environment.
How lifted code and other metaprogramming constructs can be tied
into a coherent system will be the subject of Chapter 7]

This chapter describes a metaprogramming solution to access code.
However, similar embedding characteristics can be obtained with a
more lightweight metaprogramming approach. Rompf et al. have
described language virtualisation [75] 15], which is such a solution
in Scala. There, domain-specific expressions are built within a vir-
tualising trait, which redefines certain types and operations to lift
syntax in a manner similar to ZyTyG (Chapter 2). However, instead
of reducing the host’s syntax to tokens and parsing them, language
virtualisation retains the structure of the code as a dynamically-built
abstract syntax tree. The virtualisation trait is an abstract interface for
the domain-specific semantics. The expression’s actual domain-spe-
cific behaviour is controlled by mixing the trait with others that define
rewrites or evaluation strategies. Scala’s mix-in types allow for a
modular and fine grained control of what rewritings or evaluation are
applied, and in what order. This allows the semantics of virtualised
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code to be controlled in a manner not unlike that afforded by multi-
staged metaprogramming. On the other hand, language virtualisa-
tion suffers, like ZyTyG, from its inability to control certain aspects
of the language which semantics are hard-coded, particularly those
related to side effects and control flow. Recent work by Rompf [73] and
others has led to making non-virtualisable operators more friendly to
this technique. This is obtained by modifying the compilation strategy
for these operators to resemble that of Scala’s for loop. Instead of
fixed semantics, their compilation is defined, at least conceptually, in
terms of a series of method calls, with the library providing default
implementation for the methods—and therefore default semantics for
the operators. This allows domain-specific expressions to virtualise
these operators by defining the required implementation methods.

Language virtualisation has the advantage of being a pure lib-
rary approach to embedding domain-specific programming, which
does not require compiler-supported metaprogramming. However,
to virtualise the whole language requires specialised abstractions
that are not particularly relevant to general-purpose programming.
Furthermore, while code lifting may provide typed abstract syntax
trees directly, virtualisation requires types to be added subsequently.
This can be a problem for certain domain-specific problems. But we
will discuss in the next chapter another form of metaprogramming
that concentrates on providing type information.
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Chapter 6

Static Types At Runtime

In Part [l and in the previous chapter, we have seen various reasons
why static type information is desirable to access at runtime.

e Access type information about the environment when dynam-
ically type checking embedded domain-specific fragments.

e Execute domain-specific code that relies on host language types
to define part of its semantics, such as with structural types
representing a relational algebra.

e Obtain types to attach to trees when lifting code using language
virtualisation.

If domain-specific programming is to be provided through libraries, a
mechanism to access the static types of the program will be required.
The solution that this chapter considers is inspired by dynamic types
in Haskell and ML, such as those used for the “scrap your boilerplate”
technique. These ideas where previously discussed in In this
section, we will see how they can be applied in a mainstream object-
oriented language.

Traditional reflection gives access to the types of programming
interfaces. For example, in Scala, one can reflectively list the members
of a given class, their type, the super type of the class: all type informa-
tion that the compiler knows about the class. However, reflection does
not give access to types of expressions, which are not part of interfaces.
This prevents runtime access to detailed type information held by the
compiler. Particularly, it prevents obtaining instantiations of abstract
types—type parameters of classes or methods, or abstract types. For
example, consider the simple example below.
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object A {

def f[T](x: T): T = x
}
A.f(new B)

Through reflection, it is possible to obtain the signature of f in terms
of the type variable T. When f is called with a parameter of type B,
the type variable T is instantiated, and f gains a concrete type for the
duration of that call. The concrete type for f is statically available at
the call site. However, because a method call is an expression, and is
not part of the interface that can be reflected, this static information is
not available at runtime. Only a simpler erased type is present, which
merely approximates the original type, as we had seen in Chapter
In particular, this prevents a runtime library to obtain a concrete type
for a call to f. In the example above, this concrete type would have
been (B)B—the type of a method similar to the function B => B. At
runtime, all abstract types have necessarily been concretised, but this
basic information cannot be accessed.

Because of that, using traditional reflection to obtain static type in-
formation for domain-specific programming has the following draw-
backs:

1. the library cannot gain static type information about domain-
specific expression themselves, since the types of expressions
are not maintained for the reflection library;

2. the library cannot obtain the concrete type of a declaration that
a domain-specific expression refers to, if it is defined in terms of
type variables or abstract types.

In practice, this makes type information from traditional reflection all
but useless for domain-specific embedding libraries. Another form of
metaprogramming is needed.

Runtime types A possible solution is to make all internal compil-
ation data available at runtime. This is what happens in virtual
machines with runtime types, that is, where every value is adorned
with a representation of its full type like that used by the compiler.
However, Scala, like many strongly typed languages, is compiled
using type erasure. In this process, the original types of the program
are replaced by simpler ones encoding a type discipline that is com-
patible with, albeit less precise than, the original type discipline. For
example, when Scala code is compiled to Java virtual machine binar-
ies, Scala specific types such as mixins are replaced by Java classes
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and interfaces that the virtual machine understands. Compiling a
program by erasing its types has many practical advantages.

e A rich type discipline suitable for programming may not be
optimal for evaluation; erasing it into simpler types that are
particularly suited for evaluation can improve performance.

o Also, separating the type system of the language from that of the
evaluation machine allows more flexibility in language design.
The Java virtual machine, which supports a simple class based
type discipline, is the host for a multitude of languages with
extremely varied type systems.

But these advantages are counterbalanced by the fact that a reflection
library for an erased language—or other operators that expose the
types of the program—will not have access to the static structure of
the program. Indeed, much of the relevant information has been lost
in translation as erasure is not a bijective transformation that would
allow original types to be reconstructed.

A possible solution is to modify compilation to generate alongside
the program a representations of types in the form of program data.
This differs from a typed virtual machine in that the representation
of types has no specific meaning for the evaluation machine. Doing
this allows to use program types to define elements of the semantics
of the language, without making the machine dependent on a given
type discipline. In Scala, such a system was proposed by Schinz in
his thesis [78]. However, the performance penalty of this approach is
considerable. Schinz reports slowdowns on representative programs
ranging from 15% to 86%. Important increased in code size (21-49%)
and memory allocation (33-360%) are also reported. The underlying
problem comes from the fact that library provided run time types are
an “all or nothing” solution. In practice, most code can do without
runtime program types as is demonstrated by current programming
practices in erased languages.

We discussed in the previous chapter the idea of staged program-
ming. There, fragments of code are lifted on demand to be available
at runtime. In this chapter, we will discuss a system built on the
same premises, but to access typing information rather than code.
Representation of types as runtime data structures are generated only
when needed, removing the performance penalty of classical runtime

types.
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6.1 Type manifests

A type manifest is a data structure representing static type inform-
ation at runtime. They are created by lifting program types during
compilation, where they are available. This section describes mani-
fests, and the method that controls their generation. Manifest are
available in version 2.8 of Scala, albeit in a relatively simple form. This
chapter describes both the existing Scala manifests, and an extended
implementation thereof.

The Scala standard library contains a Manifest[T] data type. An
instance is a run time representation of type T. A very basic trait
representing manifests is below.

trait Manifest[T] {
def erasure: Class[_]

}

A manifest represents a complete Scala type, which obviously requires
a more complex data structure. For now however, let us observe that
to integrate with the Java reflection library, a manifest provides the
erasure of the full Scala type it represents. Even though the erasure of
the manifest is a Java reflection Class instance, it provides information
that is not available using Java reflection. We will start by discussing
this difference as it is key to understanding the particular nature of
manifests in metaprogramming.

The dynamic type of an instance can be read through Java re-
flection. But the types used in the program itself differ from the
runtime types. More precisely, the type of a runtime instance at a
given location in the program is a subclass of the static program type
for that location. For the purpose of type checking a domain-specific
fragment, it is the program type of the environment that is of interest.
Consider for example the example below, using the embedded soL
language.

def f(a: Any) =
SELECT (’name, ’'firstname) FROM ’'people WHERE ’'age < a
f(if (state) 4 else (new Cow))

To check the domain-specific expression requires to validate the frag-
ment ’age < a, which depends on the host program parameter a.
Type checking the example above based on the static type correctly
rejects the sQL expression—cows should not be involved in this matter.
However, if using the runtime type, the program may or may not be
rejected, depending on the value of state. Worse, if the value changes
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between checking the expression and evaluating it, the expression
may be checked as valid and still fail at evaluation.

In general, using traditional Java reflection, it is not possible to
obtain the static type of a. On the other hand, manifests can provide
the correct information. The example below shows how this can
be done and introduces the discussion on automatically generated
manifests.

def f[T: Manifestl(a: T) =
SELECT ('name, 'firstname) FROM 'people WHERE 'age < a
f(if (state) 4 else (new Cow))

First, notice that the program has been changed to contain more
static type information. Instead of weakening the static type of
argument a to Any, a type parameter T is introduced to represent the
compiler’s knowledge about the type of the argument at the call site
of the method. While this allows the static type information to be
propagated further in type-checking, it is not sufficient to make it
available at runtime. It is by bounding the type parameter T with the
context Manifest that a manifest representing the static type of T can
be obtained. Calling manifest[T] within the body of f will provide the
manifest corresponding to the current method call. The table below
lists a variety of calls to f and the corresponding manifest available in
the body of f.

Call Manifest
f(4) Manifest[Int]
f(List(1l, 2, 3)) Manifest[List[Int]]
f(if (state) (new A) else (new B)) Manifest[Object]
f(new A with B) Manifest[A with B]

The manifest does not simply reproduce information from the source;
it represents a fragment of the model of the program that has been
built by the compiler. The example above containing a conditional
expression makes this property very explicit: type Object reported
in the manifest is the least upper bound of new A and new B, a type
that the compiler calculates as part of the model of the program but
isn't explicitly provided by the developer. In code that uses only
basic types such as early Java code, the type information added to the
model is small when compared with that of the source. However, in
code that heavily relies on type parameters or other advanced type
system features, the amount of information contained in the program
model can be considerable. For domain-specific code, it is critical to
have access to this information because domain-specific libraries are

121



generally implemented as abstract libraries and greatly benefit from
obtaining concrete type instantiations relative to their use.

The manifest for argument T is bound to the type that the argument
is instantiated with at the call site. This demonstrates the staged
nature of manifests. On the one hand, the type represented by the
manifest is static. On the other hand, its flow through the program
follows the rules of its evaluation. In fact, the manifest can be seen to
move to the next stage at the point where the manifest is instantiated—
the method call in the example above.

Context bounds In the example above, we assumed that in the
presence of a Manifest context bound, a manifest is available. To
understand the reason for this, let us take a step back to understand
contextbounds. Context bounds are part of the implicit programming
infrastructure of Scala. As first approximation, they can be under-
stood as syntactic sugar whereby the following structure:

def f[T: Manifest](...) = ...
is transformed into the following code:
def f[T](...)(implicit mt: Manifest[T]) = ...

In other words, a context bound defines an additional, implicit para-
meter of the type of the context bound applied to the type of the
variable it bounds. By making the manifest parameter implicit, it
need not be provided by the programmer at the call site. Instead, the
compiler will automatically complete the call by passing a value as
argument to the implicit parameter, provided the value demonstrates
the following properties:

1. it is itself marked as implicit;

2. itis in scope and accessible at the point of use;

3. itis of the correct type;

4. it is the only possible value—if not, the implicit parameter is

ambiguous.
In other words, once a corresponding manifest value is passed to a
method call bound by a manifest, it will then automatically be woven
into the fabric of the program through subsequent bounded method
calls, without additional programmer intervention.

While using context bounds brings us closer to our goal, it still
requires the programmer to provide the original manifest value for
the implicit parameter to be passed. This is why the manifest in-
frastructure contains another element to have the manifest values be
generated when needed by the compiler. If the implicit argument
cannot be completed according to the rules described above, the
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compiler will create a fresh implicit value based on its own knowledge
about the type. This allows the static type information calculated by
the compiler to be introduced into the program flow. As an example
of this, let us consider the example below, where f is the manifest-
extracting method that we already used above.

val ab = new A with B

def g[U: Manifest](u: U) = f(u)

g(ab)

The compiler will rewrite this code as follows.

val ab = new A with B
def g[U]l(u: U)(implicit mu: Manifest[U]) = f(u)(mu)
implicit val mab =
Manifest.intersectionType (
Manifest.classType(classOf[Al),
Manifest.classType(classOf[B])
)
g(ab) (mab)

There, mab is the synthetic value created by the compiler to hold the
manifest for the type of ab.

The manifest does not need to be instantiated by the compiler
inside the body of g because the manifest mab is implicitly available
from the previous call and can be used further. This is good because,
if a manifest had to be created for the body of g, it would be for the
type variable U and not an actual instantiated type. While correct
from the point of view of typing, it is not useful to have a type
manifest representing a type variable. As in the example above,
type variables must be forwarded from the location where they are
statically instantiated to the point where they are needed by using
method arguments. By designing manifests at the boundary between
static and dynamic evaluation, their ability to provide a useful type is
increased.

Controlling manifest generation Useful manifests cannot always be
generated. Consider for example the code fragment below.

def f[T: Manifest](t: T) = ...
def g[U](u: U) = {

f(u)
}

At the call site of f in the body of g, the only information available
about the concrete type for T is that it is equal to the type variable
U. If U was itself context bound with a manifest, Scala’s implicit
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inference mechanism would usefully forward it to f, according to the
logic described above. But since a dynamically passed manifest is not
available, a manifest must be generated using static information: the
manifest passed to f encodes an abstract type. Because manifests are
to be used to concretise types, this is generally not the expected result.
The user ought to annotate U so that its concrete value is available at
runtime. In that case, the compiler should fail because it is missing a
manifest.

However, there are some cases where manifests are desirable but
not necessary, or where manifests representing abstract types are
actually useful. As an example, manifests may be used to optimise
domain-specific code based on static information, but a less optimal
implementation is available in the absence of that information. This is
for example the case in the implementation of Scala’s invariant arrays,
which utilise manifests to map compatible arrays with native Java
virtual machine arrays. To cater for these various use cases, manifests
in Scala come in different flavours.

OptManifest
NoManifest ClassManifest
Manifest

The Manifest class can represent all Scala types!, including ab-
stract ones. If a Manifest is requested and it is not implicitly available,
the compiler will always generate one based on its static type informa-
tion. In the example above, this would be a manifest representing the
type variable U.

A Manifest is a generalisation of the ClassManifest type. This
latter type is able to represents a subset of all Scala types: those
which can be instantiated on the Java virtual machine. In practice, this
comprises all class types, including instantiated parametric classes—
for example List[Int], class List instantiated with the parameter Int.
It excludes abstract types, as well as existential or intersection types.

Because not all types can be represented by a ClassManifest,
the compiler cannot always create a fresh manifest from static type
information when the implicit does not resolve. This is why an
OptManifest context bound ought to be used when a ClassManifest is
required. If the manifest is available implicitly, or if the compiler can

IThe Scala 2.8 implementation does not support structural types
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generate it, a ClassManifest is provided. Otherwise, the absence of a
type that can be instantiated is represented by the NoManifest object.

def f[T: OptManifest](t: T) = ...
def g[U]l(u: U) = {

f(u)

f(new A)
}

The example above demonstrates these two situations. The manifests
generated for T in the body of g are listed in the table below.

Call Manifest
f(u) NoManifest
f(new A) ClassManifest[A]

Compiling manifests To support manifests requires changing the
compiler to generate code for creating manifests when needed. The
change plugs into Scala’s implicit parameters inference mechanism,
itself part of the Typers phase, the primary type-checking phase of the
compiler. Implicit search is a subtle process whose detailed behaviour
is beyond the scope of this discussion. It suffices to say that the
bestImplicit method is used to generate a tree fragment referencing
the implicit value whose use is most likely to yield a correct program.
However, in the case of implicit manifests, two situations can arise in

bestImplicit:

1. it has found an implicit value of the correct manifest type, and
will return a reference to it;

2. no implicit manifest value of the correct type is available in
scope.

In the second case, the expression returned by bestImplicit to satisfy
the implicit parameter is a factory for a new manifest instance. The
correct constructor is selected by the manifest0fType method.

The standard library contains, for each of the manifest kinds, a set
of factory methods for all types that the manifest can represent. The
following object contains some of the factories for class manifests.

object ClassManifest {
def classType[T](clazz: Class[_1): ClassManifest[T]
def classType[T]l(clazz: Class[_1,
args: OptManifest[_]x*): ClassManifest[T]
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For the compiler, generating an expression to call the first version of
classType is straightforward. The clazz parameter is a literal value
representing the erased type of the class. However, the second version
of classType demonstrates the recursive nature of most manifests.
There, the manifests that represent the arguments to the class may
themselves be implicitly available, as in the example below.

def f[T: Manifest](t: T)

def g[U: Manifest](u: U)
f(List(u))

}

In the body of g, a manifest representing type List[U] must be

1l
-~

generated. The args argument of the second classType method is
the manifest that is passed to g to represent its parameter U. This is
obtained through another recursive call to bestImplicit. In other
words, the recursive nature of types is replicated in the recursive
nature of implicit resolution for manifests.

6.2 Revisiting type-safe relational algebra

As an example of using manifests, we shall revisit the type-safe
relational algebra domain-specific language of We recall that the
library allowed to write relational algebra queries and execute them
in a type safe manner, as in the example below.

def studentsInLesson =
project[{
def firstName: String
def lessonName
}1 { person join attends }
}
for (p <- query(studentsInLesson)) {
println(p.firstName + " " + lessonName)

}

However, without using metaprogramming, the query operator could
not be implemented. Indeed, for every row returned by running the
query on the database, it must create an object that is compatible
with the result type of studentsInLesson. This type is the following
structural type.

{
def firstName: String
def lessonName
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For reasons explained alongside the original example, it is conceptu-
ally possible to create an instance of that type, because the domain
of a relational algebra gives it a meaningful semantics. However, it
requires the library to access the static type of studentsInLesson at
runtime. Using manifests in conjunction with reflection solves this
problem.

To do so, the domain-specific library requests a manifest for the
type of the relation. The signature of method query is as follows.

def query[T: Manifest](r: Relation[T]): Set[T]

With this information, the implementation of the method, albeit
non-trivial, can be done using traditional reflection techniques. The
implementation below is at a very high level of abstraction, but
demonstrates the general idea underlying it.

def query[T: Manifest](r: Relation[T]): Set[T] = {
val resultSet = db.execute(r.toSqlString)
val resultType = manifest[T]
for (r <- resultSet) yield {
newProxy(resultType) { (name, args) =>
r.getField(name)

}

In this example, the query defining the relation is executed on the
database db using an equivalent sQL expression. This mechanism is
explained in detail in Lavanchy’s report [59]. A resultSet—which
is an untyped data structure—is returned by the database. It may
be a JDBC ResultSet, or a similar structure. The result type is then
obtained from the manifest representing the type of T, that is, the
type of a single row in the resulting relation. At this point, data
and types are both available, but separate. The final for loop merges
them using proxies. A proxy is a special type of class provided
by the Java virtual machine, which implements a given interface,
and responds to method calls using an explicitly defined dispatch
method. Here, the newProxy method hides the implementation of the
proxy. It uses a manifest to define its type. This assumes that a Java
interface can be generated for every Scala type, which is true but may
require runtime code generation. Such proxies ought to be part of any
reflection library, but their implementation is beyond the scope of this
chapter. The second argument of newProxy is an anonymous method
that implements method dispatch. To do so, it uses the name of the
called method to access the correct field in the resultSet. Because
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the domain-specific library guarantees type safety for the relational
algebra, this access always succeed.

6.3 The manifest manifesto

The example of the previous section shows how manifests contribute
to implementing domain-specific embedding libraries. It also demon-
strates how, once static type information has been made available at
runtime, specifically compiler-related problems appear in this phase
too. This is exemplified by the use of a proxy in the implementation
of the relational algebra library. In a statically-typed language, in-
stantiation is normally controlled by the compiler, which generated
the declaration of the type as a class, and maintains a reference to
its symbol to generate instantiation code. With proxies, this whole
process is moved to runtime.

Does this mean that libraries and metaprogramming transform a
statically-typed language so thoroughly as to have it behave as if it
where dynamically typed? No, on the contrary: manifests, code lifting
or structural types are methods that maintain the statically-typed
nature of both the host language and embedded domain-specific
languages. From a user’s perspective, the type-safe relational algebra
library provides an exceptionally thorough level of static soundness
guarantees. However, to provide this integration requires the domain-
specific embedding library to take charge of some of the compiler’s
tasks.

Manifests are a crucial tool to allow such hybrid designs. It is by
providing domain-specific libraries with static type information that
such libraries can implement type-safe domain-specific languages. In
a dynamically-typed language, type information is easily accessible
to the runtime—there is no separation between static and dynamic
information. Manifests do not break down the separation between
compilation and evaluation. In any compiled language, information
about the static structure of the program implicitly is part of the
dynamic structure. Manifests make this ordinarily implicit link,
explicit. In that, they do not change the nature of statically-typed
language. Information flows in the same manner in the system; for
example, domain-specific libraries cannot change compilation using
manifests.

Though the distinction between compiler and runtime remains,
the nature of the compiler changes. Instead of being a black box whose
only connection to the world is binary code, manifests—as well as
lifted code—open cracks that allow metaprograms to peak into its

128



Chapter 6: Static Types At Runtime

internal structure. The manifests we have discussed in this chapter
are very minimal: they provide the erasure of their type, as well
as some details on the structure of complex types, as we discussed
concerning parameterised class instances. Manifests ought to provide
more information. For example, a manifest representing a structural
type contains a list of members that define the structure of the type.
These members are themselves annotated with types, that refer to
classes, and so on. For obvious reasons, it is not possible to store all
information related to a manifest in that manifest. Instead, a manifest
must contain just enough information to reconstruct other related
data. This data—definitions, types, values—is present in interfaces
that are part of the program’s normal binary representation, unlike
the data carried by manifests. Reflection can be used to access it, if the
manifest allows to plug into the reflection library. Itis therefore crucial
that manifests be integrated in a reflection framework. Moreover,
they are used to implement processes similar to those of a compiler.
The integrated framework ought to provide services to comprehend
and modify structures representing code or types, like those of the
compiler.

The next chapter discusses how manifests, code lifting, reflection,
and other metaprogramming tools can be brought together into a co-
herent system. There, manifests are not merely packets of information
left by the compiler for domain-specific libraries. Instead, they serve
when needed as pegs that clamp the dynamic model to the static one,
where otherwise it would have been approximated.
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Chapter 7

A Unified Program
Manipulation Framework

In previous chapters, we have seen two forms of metaprogramming
particularly relevant to embedding domain-specific languages: code
lifting and manifests. We discussed how these abstractions pro-
vide additional metaprogramming information beyond that available
through general reflection. Reflection provides access to information
about the runtime state of the program, and its static structure as
visible through interfaces. Code lifting and manifests provide access
to detailed compiler data about code and types, which had statically
been requested by the metaprogram.

At this point in the discussion, our metaprogramming abstractions
have been conceived separately from each other and from general
reflection. The resulting set of tools is disparate, creating a pro-
gramming paradigm that exposes much implementation complexity
to the user. To restate an example from the previous chapter, a
manifest—representing a type—does not correspond to a type in the
language’s reflection framework. Similarly, a reference to a variable
in lifted code does not provide a method to read its value using the
reflection framework. The user is made responsible for implementing
the relation between the various metaprogramming tools.

This chapter considers a design for a metaprogramming frame-
work that unifies manifests, code lifting and general reflection. In
previous chapters, I described manifests and code lifting as small
fragments of compiler data left in the code for runtime libraries.
This points to the fact that a unification of these techniques with
general reflection is akin to unifying portions of the compiler’s data
structures with those of reflection. A static symbol table and a
dynamic reflection interface are two data structures that represent
the same fundamental concept: programs. It is therefore natural
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that the same abstract interfaces be used for both, although their
implementations may differ. This provides the desired unification
at the level of public interfaces. Tools and services defined at that
level—such as class readers, algorithms on types, tree utilities, et
cetera—can easily be shared between the compiler and the various
parts of the metaprogramming framework. However, as we will see,
the implementation required to support a strong notion of identity
for the unified interface is non-trivial. Both reflection and compiler
symbol tables are dependent on a strong notion of identity.

The next section discusses the various elements that may compose
a unified metaprogramming framework. It explores their similarities,
and proposes a model based on Bracha and Ungar’s mirror-based
reflection to unify them and exploit commonalities. It proceeds
with a discussion on the complexity that stems from using multiple
sources—static and dynamic data—to create a unified representation
that requires absolute internal consistency. In section I propose
a possible implementation of the unified design, based on the Scala
compiler and data structures similar to virtual classes. To conclude
this chapter, we will reconsider the resulting system in light of do-
main-specific programming and of the metaprogramming model it

offers.

7.1 Metaprogramming with mirrors

To start, let us consider the design of the components of a typical
compiler and of a typical reflection library that are of interest to
this discussion. As in previous chapters, the concrete discussion
will refer to Scala, albeit, in principle, it could serve as blueprint
for any similar, statically-typed, erased language. Because of the
unification task we are attempting, this does not only comprise the
language, but also the actual implementation of its compiler. Of
particular interest here is the process through which the compiler
obtains a symbol table and abstract syntax trees from source, which
was outlined in The discussion on the general reflection library
will pertain to standard Java reflection when needed, or to a prototype
of mirror-based reflection for Scala, which is directly mapped upon
concepts from the language specification [33].

As was discussed above, a runtime metaprogramming framework
must combine at least the following elements into a coherent system.

1. Manifests, which are precise, non-erased types for specific ele-
ments of the program. Their representation is derived from the
compiler’s static representation. Furthermore, if code rewrite
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is needed by the domain, abstract syntax trees lifted from the
compiler must also be part of the framework.

2. The interface of the program, which is pickled (stored) in the
program’s binary files. This representation is similar to, but not
identical, to the symbol table of the compiler. Furthermore, the
compiler has a component, the unpickler, which reads pickled
interfaces into a symbol table.

3. Information about the runtime state of the program. This
includes existing instances, values of fields, the call stack, etc. In
the Java virtual machine, this information is available through
the Java reflection library. The model of the program that is
assumed by the virtual machine is not that of the symbol table,
but the result of its erasure.

4. Beyond reading data about the program, a complete metapro-
gramming framework must act on the structure of the program.
This is provided by the Java reflection library, for changing
values, instantiating objects and calling methods. More complex
changes which add classes or change their structure, require
code generation, for example using the compiler.

The first two forms of data are obtained through different means.
However, they share their fundamental structure and logic with the
symbol table of the compiler. Furthermore, core components such
as the unpickler, are identical in the compiler and metaprogramming
framework. Until now, these systems have been implemented with
very little code reuse. The representation of types in manifests is a cus-
tom implementation that is unrelated to the compiler’s representation.
Existing metaprogramming frameworks in Scala have reimplemented
their own unpickler, their implementation being usually very specific.
The representation of programs in existing reflection libraries, such as
that of Java or of prototypes in Scala are unrelated to those used by
the Java or Scala compilers. This section and the next consider how
to unify the static component of reflection with manifests—and lifted
trees when applicable.

The design I propose to unify manifests and interface reflection
can be summarised as follows.

1. The standard library of a language contains an abstract interface
that represents program structures. This includes types, sym-
bols, possibly trees, and all related structures.
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2. Common tools that act upon program structures, such as the
unpickler, are implemented in terms of the abstract interface,
and are part of the standard library.

3. The compiler and the reflection library create concrete imple-
mentations of the interface tailored to their own use.

As we will see, implementations in themselves can be very light-
weight, especially if the implementation language supports virtual
classes. The 2.8 version of the Scala compiler partially follows these
principles. Core data structures such as symbols, types and trees are
implemented as abstract interfaces in the scala. reflect package. The
class file unpickler only depends on this interface. The compiler’s
symbol table completes the scala.reflect package with compiler-
specific features. Demonstration code for a reflective implementation
of scala.reflect also exists, but is not complete enough to support
metaprograms.

A mirror-based design The paradigm proposed by Bracha and
Ungar for mirror-based reflection is a foundation for my work.
The usefulness of the paradigm as a means for unification had already
been recognised by Ungar et al. [91], who uses it to unify reflection,
debugging and other services. As we will see, encapsulation, strati-
fication and ontological correspondence, the three properties that un-
derlie mirrors, come together to support unified metaprogramming.

1. An abstract metaprogramming interface and concrete imple-
mentations is the very definition of an encapsulated design. In
that sense, the nature of a unified metaprogramming framework
coincides with a key properties of mirror based reflection. The
rationale put forward by the proponents of mirrors for that
property is that it allows to change the reflection provider,
for example to replace a local implementation with a remote
one. Unified metaprogramming pushes that idea further by
generalising it to parts of the compiler itself.

2. In traditional, non-mirror based reflection libraries, reflection
mechanisms are weaved into the runtime structure of the pro-
gram. For example, in Java’s reflection library, access to the
Class of an object—a key reflection provider—is done through a
normal instance method of Object. This would not be possible to
reproduce in the abstract metaprogramming interface. Indeed,
it assumes that the reflected program is running, which is not
true in the implementation of the interface by the compiler.
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Therefore, a stratified implementation is not only suitable, but
needed.

3. A key concern with a unified metaprogramming design is for
the abstract interface to support equally well the needs of the
compiler and reflection. While not actually solving the issue,
basing the abstract interface directly upon the structure of the
language is a first step in making unification possible. The
concept of “ontological correspondence” advocated by mirror-
based reflection serves the same purpose, albeit for reasons of
usability rather than to support unification. It must be noted
that this is a problem in the current Scala compiler as its symbol
table does not completely follow the structure of the language as
defined in the language specification. For example, refinement
types and mixin types are two different concepts in Scala’s
language specification. However, they are implemented as a
single datatype called RefinedType in the compiler.

These three points show that the principles that underlie mirror-based
reflection generalise extremely well to a unified metaprogramming
framework.

On identity However, there remains another key design principle
that needs to be taken into account: Both the compiler and the
reflection library must handle coherent sets of program elements. This
concept is oftentimes implicit in simple systems, but more complex
ones must make it explicit. Interestingly, Bracha and Ungar do not
speak of this issue in their paper.

In the Scala compiler, this notion is defined in terms of compilation
“runs”, whereby the symbol table takes a coherent state after having
compiled a closed set of files and their dependencies. Usually, the
compiler only survives for a single run, but some uses such as IDE
support or interpreters require that it isn’t restarted entirely for each
run. Multiple batches of files are submitted to the same compiler,
which is then said to be in resident mode. A new compilation run
on the same files will not yield the same symbol table. It may be
structurally equal, but its identity may differ. Indeed, the symbol table
heavily relies on instance identity, and therefore requires that only one
instance of each symbol exists. Interestingly, early versions of the Scala
compiler did not clearly differentiate compiler runs, which was the
source of many a problem.

In a reflection library, such as that of Java, a similar problem of in-
ternal consistency is visible. More precisely, the library demonstrates
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a problem that already arises in the virtual machine: classes need to
be unique. If two List classes are loaded by the virtual machine, they
will define different types and their instances will be fundamentally
different. In the Java virtual machine, and its reflection library, this
issue is handled by class loaders. Each class loader hierarchy contains
a coherent set of classes. However, the same class loaded in two
loaders will be treated as distinct, for example preventing an instance
of List from the first class loader to be passed to a method that expects
a List from the second.

To abstract runs and class loaders, we must build upon the frame-
work of mirrors. In Bracha and Ungar’s proposal, each element—
class, object, method—is mirrored by itself. To pursue the metaphor,
this situation is dangerous because, if each element is reflected on
its own, separate mirror, the program will be visible from different
angles, which may yield an incoherent picture. Instead, it is more
correct to consider a single mirror that reflects all elements: the
perspective remains identical for all reflection and no incoherence can
arise. In this metaphor, a mirror corresponds to a class loader, or to
a compiler run. The elements it reflects are coherent amongst them-
selves, but not with those from other mirrors. To prevent confusion,
I will call a mirror that abstracts class loaders and compiler runs a
“universe”.

In this model, the difficulty stems from maintaining a coherent
universe even when it is created from multiple sources. If a manifest
refers to a class, and the same class is read using reflection, the
resulting class mirror must be the same instance. Only one instance
of each symbol is created; it is however acceptable to have multiple
instances for the same syntax tree or type because they do not carry a
notion of identity like symbols. Of course, it is in principle possible to
build a representation of a program that does not follow these rules,
and where symbol equality is recalculated every time. However, such
a design is inherently inefficient, making it unpractical to use in a
compiler. Because the abstract metaprogramming interface is to be
shared by the compiler and reflection library, and because the former
requires efficient data structures, out design must provide represent
symbols as unique instances.

To better grasp the situation let us consider a pseudo-Scala ex-
ample that checks if a manifests represents a single class and, if so,
returns the result type of the method called f.
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manifest[T] match {
case ctp: ClassManifest =>
ctp.classSymbol.findMethod("f").resultType
case _ => Nil

}

The type represented by the manifest is generated within the universe
of the compiler. The type that is obtained by calling resultType on a
method is generated within the reflective universe unpickled from the
classes’ interface. However, despite their different origins, these two
universe are one in a unified metaprogramming framework. Let us
consider what happens in this code if the instantiation of type T is the
following class.

class A { def f: A= ... }

Here, the result type of f is the type of the class itself. Both types
refer to the symbol of A, which must be the same instance despite
their different origins. A unified metaprogramming framework must
therefore abstract over the implementation in such a way that identity
can be maintained. Assuming that each provider can guarantee
identity for its own data, it can be maintained overall if each symbol
is assigned a unique origin.

In our model, there is an abstract interface shared between the
compiler and metaprogramming framework. However, because we
consider compiled languages, we can assume that the two do not
share metaprogramming data. This means that, if a symbol mirror
for class A is created in the compiler and is lifted to runtime in a
manifest, it need not be the actual instance that is lifted. Instead,
the compiler generates code that creates a new instances within the
metaprogramming universe at runtime. Symbol identity must be
maintained between manifests, lifted code, and data from general
reflection, but not across the compilation boundary. In a compiled
language, even in presence of metaprogramming, there remains a
barrier between static and dynamic evaluation which guarantees that
they cannot be interleaved.

In a Java-like object-oriented language, any method or field is
necessarily a member of a class, and is therefore part of its interface.
This always allows general reflection to be used to create a mirror for
it. Maintaining identity for such symbol is therefore a question of
delegating the task of creating them to a single origin. A manifest
or lifted code fragment that creates a mirror for a symbol should
not instantiate it directly. Instead, it should be defined in terms of
a call to the corresponding factory method in the general reflection
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framework. Because both systems are defined as part of a unified
universe, symbol mirrors from that framework will be compatible
with the the data structure of the manifest or lifted code.

There remains a problem with local variable symbols, which may
not be part of the interface of the program. However, as we had
seen in the paragraph on hygiene of a reference in a fragment of
lifted code to a free variable is transformed into a field of the closure
encapsulating the lifted code. This symbol is therefore accessible
though the general reflection framework. Only the symbols of ref-
erences to variables that are defined within the lifted fragment cannot
be instantiated in that manner. Since the declaration and all uses of the
symbol are, by construction, part of the lifted fragment, it is possible
to assign the origin of that symbol to the lifted code itself. Because
any fragment can only be lifted once, the uniqueness of the symbol is
guaranteed.

In the case of the metaprogramming infrastructure described in
this dissertation, a unique origin can be assigned for each symbol
a priori. Symbols of methods or fields originate within the general
reflection framework. Symbols of local variables bound within lifted
code fragments are generated as part of the fragment. If the metapro-
gramming infrastructure were to be extended to include more sources
of data, designers must ensure that symbols can still be assigned to an
origin a priori.

7.2 An implementation to share code

The previous section described a mirror-based design for a metapro-
gramming framework, that unifies the compiler and various parts of
the reflection framework. The claimed main benefits of that design
are twofold:

1. metaprogramming code can be written in terms of the abstract
data structure, and shared between implementations;

2. multiple implementations can coexist alongside each other.

In this section, we will discuss in more detail how the principles laid
out in the previous section can be implemented. The first element
of the implementation is to use an encoding of the abstract interface
inspired by virtual-classes. The second, is to use the unified abstract
interface as a foundation to connect multiple metaprogramming lay-
ers, and thereby unify multiple implementations. Before we discuss
these two elements, let us quickly consider the interface of the abstract
data structure for metaprogramming.
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Data structures for the abstract interface In a design for a meta-
programming framework, the abstract metaprogramming interface is
crucial. It defines the interface for representing program features that
is shared by the compiler and the public reflection library. This work
bases its abstract interface on the existing model of the symbol table in
the compiler. This is a pragmatic approach, since this data structure
cannot be amended easily. We will however reconsider this design
in the conclusion of this chapter, and again in the conclusion of this
thesis.

The structure representing programs in the compiler is composed
of three major categories of data: symbols, types and abstract syntax
trees. Besides these three major categories, it also uses additional
types such as the following;:

e names that underlie symbols but are not unique;

e scopes that contain member symbols within class symbols or
structural types;

o flags that control various properties of symbols;

e constants that are used to represent literal values in trees or for
constant types;

e annotations that may be applied to trees or symbols.

Each of the major and additional categories are defined either as a
single class or trait, or as a trait hierarchy. All traits composing a type
are defined within a module-trait, and their dependencies are defined
using a self-type annotation on the module For example, a skeletal
implementation of the module for types may contain the following
code.

trait Types { self: Universe =>

abstract class Type { ... }

class ClassType(...) extends Type { ... }

class CompoundType(...) extends Type { ... }
}

A coherent, single universe is composed by mixing all traits into a
class, in a manner similar to the example below.

class Universe extends Symbols
with Types
with Trees
with ...

139



This design implements Scala’s sandwich pattern, which is outlined in
Chapter 27 of the Scala guide by Odersky et al. [69]. This pattern also
exists in other language, for example in C++ [43]].

An encoding like virtual classes The design of the abstract interface
must be such that it allows writing generic code. This means that
code is defined purely in terms of the interface, independently of
its implementation. A simple set of abstract classes is sufficient to
write generic code that only uses method calls. But useful generic
code must also be able to instantiate objects, or to deconstruct them
using pattern matching. When generic code is applied to a concrete
metaprogramming framework—for example to the compiler or to
a reflection library—the instances it creates must be of the corres-
ponding type in the concrete universe. This behaviour is akin to
virtual classes [63]. Scala does not natively support virtual classes,
but there exist encodings displaying similar properties. Below, we
will discuss such an encoding, which uses abstract types as well
as factory and extractor methods to provide instantiation as well
as pattern matching. This encoding has the advantage of making
concrete implementations very straightforward. It is used in the Scala
prototype implementation for types, but other categories of data are
implemented differently.

An abstract version of this data structure cannot be obtained using
simple object-oriented extension. Take for example the module for
types described above, and assume it is defined abstractly. Can a
concrete instance of the abstract symbol table be created by extending
it? Trait Types can of course be extended with a concrete implement-
ation, alongside each abstract class that compose it. However, this
design does not provide the desired level of abstraction. Let us for
example consider the following two simple universes: AbsUniverse
is the abstract interface to metaprogramming, ReflectedUniverse is a
concrete instance of it. For the sake of this example, only types and
symbols are defined.

abstract class AbsUniverse extends AbsTypes with AbsSymbols
class ReflectedUniverse extends AbsUniverse

with ReflectedTypes

with ReflectedSymbols

A metaprogramming tool—for example a class file unpickler—ought
to be written in terms of the AbsUniverse, as in the example below.
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abstract class Unpickler {
val universe: AbsUniverse
def unpickle(...) = {

universe.ClassType(...)

}

Here, the body of the unpickle method creates, amongst other things,
a class type by calling a factory method in the abstract universe. This
implementation is independent of the eventual universe, which is
defined by giving a value to universe when Tools is made concrete.

object UnpicklerForReflection extends Unpickler {
val universe = new ReflectedUniverse

}

However, for this code to work requires the abstract universe to be
implemented as more than a set of abstract classes.

The basic idea of the design is to utilise abstract type members
to represent data structures, and to utilise Scala’s support for object
construction and deconstruction in apply and unapply methods. To
understand how this work, let us consider for example the module
that defines the abstract interface for types—to simplify, the hierarchy
of types has been reduced to only two.

trait AbsTypes { self: AbsUniverse =>
type Type >: Null <: AnyRef

type ClassType >: Null <: Type
val ClassType: ClassTypeExtractor
abstract class ClassTypeExtractor {
def apply(s: Symbol): ClassType
def unapply(t: ClassType): Option[Symbol]

}

The trait AbsTypes, and its self-type are identical to the concrete
implementation above. However, instead of using classes to represent
a Type or ClassType, abstract type members are used. This says that a
class implementing AbsTypes will need to provide concrete types for
Type and ClassType. In the implementation we refer to, Type was an
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abstract class and does not need a factory, but ClassType does. This is
provided by the ClassType value—companion of the type because it
has the same name—, which must implement the ClassTypeExtractor
interface. The extractor defines an apply and unapply method, which
have a special meaning in Scala as demonstrated below.

val t = ClassType(s)

t match {
case ClassType(s) => ...
case _ => ...

}

In this example, the expression ClassType(s) serves as constructor for
the type and will be rewritten as ClassType.apply(s). The case in the
pattern match expression is rewritten as ClassType.unapply(t); the
case matches if the unapply returns some value, otherwise, the default
case is executed. It is thereby possible for the abstract universe to
define constructors and de-constructors, and implement generic tools
like the unpickler above.

A concrete implementation of module AbsTypes for reflection is
obtained as follows.

trait ReflectedTypes extends AbsTypes {
self: ReflectedUniverse =>

trait Type extends TypeImpl

case class ClassType(s: Symbol) extends Type
object ClassType extends ClassTypeExtractor

}

Abstract type members of the abstract interface are directly imple-
mented as traits or classes. Companion values are implemented as
objects, whose constructors and de-constructors are automatically im-
plemented by the case modifier on the corresponding class. Concrete
instances of the abstract interface can thereby be implemented using
remarkably short code. Of course, if a similar framework were to be
implemented in a language supporting virtual classes, this encoding
would become unnecessary.

Multiple layers The design described above gives the ability to
easily create many concrete implementations of an abstract metapro-
gramming interface. It fulfils the goal of allowing to write generic
metaprogramming code, which is independent of its implementation,
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in accordance to the principles of mirror-based design. However, a
universe can only be instantiated to a single implementation.

val universe: AbsUniverse = new ReflectedUniverse

Here, the universe is based on Java reflection and class signature
unpickling. But the second design goal for the unified metaprogram-
ming framework is to be able to unify multiple sources of metapro-
gramming into a single one.

val universe: AbsUniverse = new UnifiedUniverse {
val reflection = new ReflectedUniverse

val lifting = new LiftedUniverse

}

The example above shows a concrete instantiation of a universe that
provides metaprogramming using both a reflection-based universe
and one handling code lifting. Symbols and types would be provided
by reflection, while trees may come from code lifting. Both Reflected-
Universe and LiftedUniverse are implementations of AbsUniverse.
But UnifiedUniverse is also an implementation of the same abstract
interface. The unifying nature of a mirror-based design means that
merging universes becomes a simple question of implementing a for-
warding proxy. While generally straightforward, two issues remain to
be considered.

1. How to support data structures in one universe which contain
references to values from different universes.

2. To which sub-universe should the unified universe forward
requests for creating new instances.

The first issue is solved by making the implementations of uni-
verses generic to the universe. Like an unpickler tool that can be
written generically for any universe, the code of a concrete universe
is written such that it can accept elements of another universe. For
example, the ClassType type in the previous example contains a
symbol. There, the symbol is required to originate from the same
universe as the type. This is because the constructor defined using the
apply method of the companion value takes a symbol that is linked to
the current universe.

trait AbsTypes { self: AbsUniverse =>

abstract class ClassTypeExtractor {
def apply(s: self.Symbol): self.ClassType
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Although self has type AbsUniverse, it defines a constraint that forces
the instance of the universe owning the symbol to be the same as that
owning the type. To allow symbols from other universes requires that
the parameter of apply is abstract.

def apply(s: AbsSymbol): self.ClassType

}

The AbsSymbol type represents a symbol from any universe. It is
defined as part of the AbsSymbols module.

trait AbsSymbols { self: AbsUniverse =>
type AbsSymbol = u.Symbol forSome { val u: AbsUniverse }
type Symbol >: Null <: AnyRef

}

In this implementation, I use a Scala existential type that does not put
any constraint on the universe owning the symbol. This design allows
for the desired architecture, but is weak in terms of typing. Indeed,
there is no guarantee that a unified universe will only contain data
from one of the sub-universes composing it. Existential types are too
genericin that regard. Proposing a more refined design is future work.
A direction for that work may be to consider a form of union types
that could be applied to the prefix u of Symbol. In Scala, the prefix can
either be exactly one universe or, using existential types, any universe.
If a type that defines the prefix as a closed set of acceptable universes
were available, it could be used to implement the desired constraints.

The second issue for defining the forwarding proxy that imple-
ments a unified universe is to consider instantiation. The discussion
on identity in laid out the property that, for any element in the
universe, either multiple instances are allowed, or it is possible to
know a priori which universe is responsible for it. This considerably
simplifies the question of forwarding instantiation. Every apply
method defined in the unified universe may either not care about
which universe instantiates the object, or may calculate the universe
a priori. The following code implements the module for symbols in a
unified universe implementing AbsUniverse.

trait UnifiedSymbols extends AbsSymbols {
self: UnifiedUniverse =>
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abstract class Symbol {
val universe: AbsUniverse

val delegate: universe.Symbol

object Symbol extends SymbolExtractor {
def apply(): Symbol = new Symbol {
val universe: reflection.type = reflection
val delegate = universe.Symbol()

}
def unapply(s: self.Symbol): Boolean = true

}

As is expected from a forwarding proxy, each symbol contains a
delegate. The universe that provides the delegate is also stored,
providing the delegate with a concrete type that includes the universe
that owns it. The example above assumes that symbols must always
be created by the reflection universe. A more complex a prioriruleis
implemented by creating Symbol instantiation code for every universe,
and choosing the correct one using an arbitrary predicate.

The ability to define abstract universes in a largely generic fashion
offers great freedom to create complex webs of metaprogramming
data structures from multiple sources. However, unifying universes
require somewhat more boilerplate code than straightforward im-
plementations, as is common for any design based on forwarding
proxies. Also, as we previously discussed, Scala’s type system does
not currently permit to enforce that a unified universe only contains

data from one its sub-universes.

7.3 Leveraging unification

As was laid out in the seminal paper on mirror-based reflection, the
design is a powerful unifier. The abstract interface allows to easily
support multiple implementation of metaprogramming: manifests,
lifted code fragments and general reflection. The end of the previous
section demonstrated how the unifying nature of mirrors favour the
integration of multiple metaprogramming concepts.

Mirror-based metaprogramming, as opposed to reflection, is an
extension of the design to the compiler’s own data structures. It
extends the benefits of the original design to a broader issue. First,
the design helps to supports metaprogramming abstractions that
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create a bridge between the compiler and runtime. Because a single
abstract representation is used as basis for similar data structures
in the compiler and the reflection library, no ontological mismatch
hinders the flow of information. Second, the design reduces code
duplication, because metaprogramming code that is shared between
a compiler and a reflection library can be written against the abstract
interface. In the Scala prototype, the class file unpickler is the main
component that has been made generic. But many other tools may be
subjected to the same treatment. Portions of the type checker may be
made generic, thereby providing the ability to test type properties in
metaprogramming.

In fact, it is most of the compiler that may be made generic,
opening the possibility of easily generating binary code from within
the metaprogramming framework. Conversely, if metaprogramming
code is written using the same abstractions as the compiler, static
evaluation of metaprogramming code becomes possible. This opens
new avenues for deploying pluggable type systems, custom compiler
transformations, et cetera on the basis of partial evaluation. This in
turn may play a central role in domain-specific programming. We
have seen throughout this thesis how statically-typed languages are
suitable recipients for domain-specific programming. Their major
caveat is that, because some domain-specific evaluation happens
during the runtime phase, embedded domain-specific fragments do
not demonstrate all properties of a priori correctness and performance
that normal code does. In a sense, they take advantage of the
static information, without returning the favour. To give domain-
specific embedding libraries the opportunity to do so will require
that the compiler understands them better. We have discussed in this
part of the thesis mechanisms that give more static information to
dynamic libraries; maybe the compiler ought to grab some dynamic
information back. How to do this is beyond the scope of this disser-
tation. However, a likely prerequisite is a unified metaprogramming
framework spanning the compiler and reflection, like that described
in this chapter.
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Conclusion

Because of the variety of domains that may be used in software, it
is unimaginable that they may be supported by a single, universal
technique. In this dissertation, we discussed a series of techniques that
function together to allow a relatively broad class of domain-specific
languages to be embedded in Scala. Variations of these techniques
may be used in other statically-typed, object-oriented languages, if the
right abstractions are available.

The first part of this thesis exemplified how libraries can be used
to provide embeddings for domain-specific languages. In these tech-
niques, a library of the host language allows to compile code that has
the look and feel of a domain-specific language.

The ZyTyG technique uses simple sequences of method calls and
values to represent expressions in an arbitrary language. The struc-
ture of the embedding library defines the grammar of the domain-spe-
cific language, and how domain-specific values are mapped within
the host. This technique does not allow to embed any language, but
the class of embeddable grammars is surprisingly useful, and can
be defined formally as a member of the modulo-constrained family.
The biggest drawback of this technique is that it prevents using the
host language’s type system to guarantee domain-specific correctness
properties.

The next technique focuses on that last point, using Scala’s new
structural types, as well as compound types, to encode a domain. The
types not only serve to provide correctness guarantees but become
an integral part of the domain-specific language. However, struc-
tural types are not natively supported by the Java virtual machine,
and an implementation thereupon is described. The description of
this reflection-based implementation also raises the question of the
relation between library-based embedding techniques and domain-
specific programming.

Library-based embeddings are like tricks of a magic show: the
substance of the host language does not change, but the attention of
the programmer is drawn in such a manner that he sees another lan-
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guage. Host language abstractions are not used to clarify the program
by providing fixed, recognisable structures. Instead, their purpose in
that method is to break down the language’s original meaning in order
to later reconstruct new structures around a different mental model—
that of the embedded domain-specific language.

Albeit powerful, abstractions of general-purpose languages cannot
represent all facets of all domains. The thesis identifies a number
of recurring difficulties when embedding languages using libraries

without metaprogramming.

o The ability to define domain-specific correctness properties in
the embedding library is limited because it lacks access to static
information about how the domain-specific fragment integrates
with the rest of the program.

e Embedding domain-specific semantics requires the library to
get leverage on the domain-specific fragments, which is only
possible if they have a different syntax. This may not be desired.

¢ If domain-specific fragments reference external values, meth-
ods, binding must happen according to the rules of the host
language—using implicit views in ZyTyG—because implement-
ations of domain-specific libraries cannot access values directly.
A similar issue arises when instantiating new objects in domain-
specific code.

The recurring issues that have been identified can be considered
as different instances of a wider problem, whereby insufficient static
information about the program is left at runtime for domain-specific
libraries to be implemented. To overcome these issues requires that
static data on types, codes or environments be left in the program by
the compiler. The second part of the thesis discusses two metapro-
gramming abstractions that carry code and types from the compiler
to the runtime.

Code lifting, a pragmatic approach to staged metaprogramming,
lifts fragments of code out of the normal compilation and replaces
them with a representation thereof. For runtime libraries, lifted frag-
ments are simple literal values in the shape of an abstract syntax tree,
which can freely be manipulated. A novelty of the approach described
in this thesis is that the selection of lifted fragments is not done using
explicit operators, but implicitly through types. This is well suited
for domain-specific programming, because embedding libraries can
request fragments to be lifted without the user’s knowledge.

Manifests are value parameters that represent the type parameters
of generic methods, thereby reproducing static information at runtime
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which isn’t available in erased languages. The compiler automatically
completes these parameters using the knowledge it has inferred about
the program’s types. But because manifests are parameters, they
are then passed according to the runtime semantics of the program.
The static information left over by the compiler merges with an
actual runtime execution to concretise abstract parameters. This gives
domain-specific libraries access to information about types that is
as precise as that used by the compiler, yet specific to a particular

instantiation.

As such, the usefulness of these two techniques is limited because
they do not form a coherent programming model. Mirror-based
metaprogramming is a proposed design that extends mirror-based re-
flection to unify it with the compiler. This create a coherent model for
domain-specific metaprogramming, encompassing reflection, code
lifting and manifests.

This framework must be understood not only as a technical solu-
tion to improve manifests and code lifting, but as an attempt to so-
lidify the scheme to embed domain-specific languages using libraries
and metaprogramming. The very nature of the design that exposes
the internal structure of the compiler through an abstract interface,
integrates domain-specific metaprogramming in the heart of a lan-
guage, where it belongs. A language and compiler that are designed
according to this principle include reflection in their design. But the
unification is not limited to reflection-based metaprogramming, as
library-based tools may also directly be integrated in the framework.
For example, an implementation of the abstract metaprogramming
interface may be based on lifting code using Rompf’s language vir-
tualisation, thereby integrating it with other reflection-based tools for
domain-specific programming.

The various tools and techniques of this dissertation form a con-
ceptual scheme to write embedded domain-specific languages using
libraries and with the help of metaprogramming. It remains to be
seen how successful this scheme will be. The idea of using libraries
for embedding domain-specific languages is certainly popular, and
ZyTyG, or variations thereof, are commonly used. Code lifting using
libraries, as described by Rompf et al. (see under the term of
“language virtualisation”, and which fits the framework very well,
has recently been the centre of a major effort to bring more domain-
specific languages to Scala. However, metaprogramming techniques
for domain-specific programming remain limited in mainstream lan-
guages. In Scala, manifests have only been added recently and
remain incomplete, and code lifting is available only as a prototype.
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The scheme is therefore missing a major component, which hinders
its acceptance. Indeed, a main complaint against ZyTyG-like do-
main-specific languages is the lack of correctness guarantees. As
for structural types to represent domain-specific properties, their use
without dynamic metaprogramming is limited to providing front-
ends without implementations.

To conclude, let us take one step back and consider some lessons
that have been learnt through this thesis and that concern the design
of languages. My reflection on the importance of domain-specific
programming for the future of software lead me to conclude that
abstractions that support it ought to be at the centre of general-
purpose language’s design. They ought to actively support libraries
that change their semantics, syntax, the way the environment is ac-
cessed, or what properties a program must demonstrate to be deemed
correct. As we discussed, MetaML-like metaprogramming and syntax
macros remain an attractive and elegant solution. However, it is a
radical design which has not been demonstrated to integrate with
existing, mainstream programming tools, techniques, libraries, et
cetera. The scheme for domain-specific programming described in
this dissertation builds on existing, mainstream technologies. It has
been described for Scala, a language that is completely compatible
with existing Java programs and technologies, making it a good
candidate to bring domain-specific programming to the mainstream.
What have I learnt about the design of languages that aim to support
library-based domain-specific embeddings?

o Elements of syntax are too important to programming to take
them away from programmers. Any identifier that is a keyword
with fixed semantics is lost to the programmer, and because it
was chosen by the designer of the host language, it is likely to be
desirable to the domain-specific programmer too. Languages
that support domain-specific programming should minimise
the number of their keywords, or give the possibility to override
their meaning.

o Core abstractions such as calling methods or creating instances
should not have a visual character that is too strong, so as to
bring flexibility in the way they are read by programmers.

o A static type system is an invaluable tool for domain-specific
programming because it allows to cleanly differentiate between
the treatment of domain-specific fragments and the rest of the
program. A powerful type system allows for finer distinction of
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domain-specific fragments and the host program, and thereby
tighter embeddings.

e In particular, a language should have conversion abstractions
that are guided by types and not explicitly visible in code, such
as Scala’s implicit conversions. These allow to hide barriers erec-
ted because of implementation, but irrelevant to the program,
which is crucial to domain-specific programming. In general-
purpose programming, this invisibility is oftentimes deemed
undesirable because it hides elements of the design. However,
library-based embeddings rely on abstraction trickery to draw
the attention of programmers to domain-specific properties that
may differ from the true structure of the code.

e Types can be used to define domain-specific correctness prop-
erties, not only to control the scope of the embedding. There is
some indication that extensible types such as structural types,
and operators such as union or intersection—Scala’s compound
types—may be well suited to certain classes of domains. How-
ever, it is important that the language provides the ability to
create instance of any type, assuming the programmer can
provide a semantic for the instance.

e Finally, metaprogramming is a key part of the problem, and
should be at the very centre of the design of the language.
The data structures for metaprogramming should be designed
alongside and in interaction with the syntactic form, and with
the same care. A compiler that represents the program in a
manner that contradicts the way in which the programmer sees
is unsuitable for domain-specific metaprogramming.

It is clear that most mainstream object-oriented languages are not
well suited to host domain-specific programming. This appears not to
be because this family of languages is inherently incapable of doing so.
However, it requires a number of commonly held assumptions about
the design of languages to be questioned. For example, statically-
typed languages should not only be considered as a mean to guarantee
increasingly precise properties on programs, but also as a substrate
to drive implicit constructs that disrupt the visible structure of the
program. Indeed, there is a need for abstractions that destructure
programs instead of structuring them, for example in the way syntax
is used. With this in mind, the first part of the conjecture underlying
the thesis can be fully appreciated.
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Modern statically-typed object-oriented languages such
as Scala have language abstractions—or can support new
abstractions—that allow to satisfactorily host domain-spe-
cific programming. Domain-specific syntax, semantics,
correctness properties and data can be provided without
preprocessor or custom compiler...

Destructuring the host language permits the implementation of
domain-specific embedding libraries, but must be counterbalanced
by such libraries restructuring it on the basis of their domain. For
domain-specific libraries to reconstruct this structure requires them to
function at the same level as a compiler. They must act on types, code
and data. This happens in collaboration with the compiler because
the fragments they consider do not exist in a void, but within a larger
program.

However, more static data must flow to the runtime im-
plementation of domain-specific libraries than what is
required by other libraries. Metaprogramming that unifies
the compiler and runtime reflection provides the right
framework to support this.
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